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Abstract

In this paper I examine episodes in which superstar inventors relocate to a new city. In particular,

in order to assess whether the beneficial effects of physical proximity to a superstar have a restricted

network dimension or a wider spatial breadth (spillovers), I estimate changes in patterns of patenting

activity following these events for two different groups of inventors: the superstar’s close collabora-

tors, and all the other inventors in a given urban area, for both the locality where the superstar moves

to and for the one that is left behind. In the case of collaborators, I restrict the attention to patents

realized independently from the superstar. The results from the event study register a large and per-

sistent positive effect on the collaborators in the city of destination, as well as a simultaneous nega-

tive trend affecting those still residing in the previous location. In the long run, these effects translate

into an increased difference between the two groups of about 0.16 patents per inventor. Conversely,

no city-wide spillover effect can be attested, offering little support to place-based policies aimed at

inducing a positive influx of top innovators in urban areas.
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Theories of knowledge spillovers are predicated on a variety of social mechanisms, which all

explain – across different settings – the occurrence of information exchange through individual

interaction. Among these mechanisms, geographic proximity occupies an ambiguous position.

On the one hand, spatial vicinity can be thought as a factor that is complementary to the pro-

cess of knowledge creation, which occurs through formal professional collaborations within or

between organizations. On the other hand, proximity may also favor the diffusion of new ideas

among spatially close, but professionally unrelated workers. The latter scenario entails agglom-

eration externalities, a circumstance that can explain the endogenous co-location of individuals

and firms across space, with far-reaching policy implications.

Despite the relevance of this issue, economic research does not offer a clear description and

supporting evidence of how geographical proximity drives the emergence and diffusion of eco-

nomically valuable new ideas. In order to isolate local knowledge spillovers, in this paper I an-

alyze episodes in which “superstar” inventors – those in the top 5% of the patent distribution –

relocate across North American or European cities. In particular, I examine the impact of these

events over time on the “residual” patent output (patents not coauthored with the superstar) of

four groups of inventors: that is, the individuals who belong to the network of patent collabo-

rators of the superstar and those who do not, for both localities of departure and destination.

In addition, I analyze how these effects vary between superstars’ coworkers and other kinds

of collaborators, with the relative position of the moving star in the patent distribution, across

technological fields, and by the geographical extent of the move (whether it involved moving

across the Atlantic, and in what direction).

The main findings from this event analysis can be summarized as follows. The relocation of

superstar inventors appears to follow periods of time when both groups of collaborators – those

in the locality of destination, and those left behind – experience similarly increasing trends of

their residual patent production. Following the event, however, the trend relative to the col-

leagues left behind experiences a reversal, which manifests itself with a one year lag (this might

reflect the lag of the R&D-to-patenting process). Conversely, the residual patent output of the

newly neighboring colleagues keeps increasing for a few years to eventually remain stable. Thus,

following the event the difference between the two groups increases – relative to the baseline

year – up to about 0.16 extra yearly patents per inventor in favor of the benefiting network. The

main qualitative result is robust to a variety of patent measures, and it appears stronger if coau-

thors from either locality have also been coworkers of the moving superstar, if the latter belongs

to the top 1% of the patent distribution, and in the Electro-ICT and Mechanical sectors.

Nevertheless, there seems to be no strong evidence in favor of a similar effect on the patent

output of all other inventors in both cities involved. Instead, the results indicate that super-

stars move towards cities that, relative to their city of departure, experience a slightly stronger
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increase in their total patent output in the years before and after the event, but not an increase

in the overall quality of such patents (as measured by patent citations) or in the average patent

production of their inventors. Taken together, these findings indicate that knowledge spillovers,

if they exist, appear largely confined within the circle of one inventor’s close connections; by the

terminology introduced in this paper, local knowledge spillovers do not seem to be very much

external to the superstar’s network. As a consequence, the evidence in favor of “big push” type of

place-based innovation policies – realized on the expectation that attracting few highly creative

individuals may result into a wider equilibrium shift in local innovativeness – is mixed.

This paper builds on the tradition of economic studies searching for geographically local-

ized externalities associated with R&D activity. In their renown seminal work, Jaffe, Trajtenberg

and Henderson (1993, JTH) show how patent citations – which are seen as the “paper trail” of

knowledge spillovers1 – tend to come from the same urban area as the cited patent. In subse-

quent research, however, JTH are notoriously criticized by Thompson and Fox-Kean (2005, TF).

The latter show that, upon “zooming in” to finer technological classes, the result by JTH vanish,

suggesting that the originally evidenced correlation reflects the spatial distribution of economic

and technological activity. By contrast Breschi and Lissoni (2009, BL), in a contribution that an-

ticipates some of the ideas explored in this paper, show that the results by JTH become smaller

in magnitude – but are still economically significant – when controlling for the “social distance”

(in the network sense) between the two inventor teams behind both citing and cited patents,

even within narrow technological sector as per the analysis by TF.

In addition to BL, other studies about knowledge spillovers incorporate a social or network

dimension. Agrawal, Kapur and McHale (2008) show that while reducing either the network or

the geographical distance between inventors increases the probability of citing a patent, these

two factors seem to be substitutes rather than complements in knowledge production, which

is consistent with the results presented in this paper. In another study, Agrawal, Cockburn and

Rosell (2010) attest that in “company towns” patent citations are concentrated within the same

firm, suggesting an organizational dimension of spillovers. Breschi, Lissoni and Miguelez (2017)

study both the “diaspora” and “brain gain” effects at work among expatriate inventors, that is

respectively the role of ethnic and home country ties in determining patent citations. In this

paper, social networks shaped by co-patenting relationship are interacted with geography, with

the aim of disentangling the spatial and social dimensions of knowledge flows.

Studies of knowledge spillovers typically differ by the geographical scope of the knowledge

flows they examine. Some analyses focus on cross-country spillovers (Branstetter, 2001; Keller,

2002; Singh, 2007; Mancusi, 2008), while others delve into smaller geographical units, like states

1This definition is based upon one famous critical statement by Krugman (1991), according to whom “knowl-
edge flows [. . . ] are invisible; they leave no paper trail by which they may be measured and tracked.”
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and regions (Audretsch and Feldman, 1996; Almeida and Kogut, 1999; Singh and Marx, 2013;

Bloom et al., 2013). In this paper, I consider the city or metropolitan area as the relevant spatial

dimension of knowledge spillovers. In this respect, a notable precursor is the study by Moretti

(2004), who shows that plant productivity is predicted by the share of college-educated workers

from other industries in the city where the plant operates. Furthermore, the analysis of firm-to-

firm R&D spillovers by Lychagin et al. (2016) provides an interesting take on the determination

of spillovers’ geographical scope: by estimating models featuring effects of external R&D that

decay with distance, they argue that spillovers are largely confined within small areas.

The central identification problem faced by all these researchers is how to separate genuine

geographic externalities from other common factors that are shared within the localities of in-

terest. In fact, this methodological issue is not specific to the analysis of knowledge spillovers, as

it is shared by all urban and trade economists searching for general agglomeration economies

(of which knowledge spillovers is usually thought to be one main determinant). A celebrated

approach, employed by Greenstone, Hornbeck and Moretti (2010) in their analysis of the effect

of large plants on local productivity, is to exploit tail events affecting “winning,” but not similar

“losing” localities, and compare the outcomes of the two places against one another. This paper

is based on a similar idea: specifically, I compare the patenting outcomes of selected groups of

inventors between places that “receive” and places that “lose” superstar inventors. While the

superstar’s decision to move might be endogenous to the characteristics of the two groups, the

machinery of the event study analysis allows to evaluate if their pre-event trends are sufficiently

similar to one another and, if they are, how do they compare with the post-event dynamics.

This paper is also related to all those studies examining the economics of innovative “su-

perstar” professionals, with a focus on very successful inventors and academics. Perhaps most

famously among these studies, the work by Azoulay, Graff Zivin and Wang (2010) provides evi-

dence on the role of superstars in stimulating the intellectual production of other scientists, by

documenting the negative consequences of a superstar’s “extinction” on his network of strict

collaborators.2 Oettl (2012) extends their analysis and methodology to what he calls mavens,

that is, scientists of below-stellar productivity but of high “helpfulness” towards other scientists.

In another related and influential study, Waldinger (2011) finds however more mixed evidence

of star effects following the exile of Jewish top academics from Nazi Germany. There is also a

growing interest in the analysis of the migration patterns of superstar inventors. In particular,

recent work has assessed the role of marginal tax rates in determining the location choice of top

inventors, both between U.S. cities and states (Moretti and Wilson, 2014, 2017) and countries

(Akcigit, Baslandze and Stantcheva, 2016).

2The identification strategy employed in their paper, however, is not capable to provide an unambiguous test of
the interaction between collaboration with a superstar and common spatial location (see the discussion at pg. 577
of the article).
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The remainder of this paper is organized as follows. Section 1 provides a discussion of the

conceptual framework underlying the paper. Section 2 introduces the data and describes the

mobility pattern of highly skilled inventors. Section 3 outlines the empirical framework for the

analysis of superstar relocation events. Section 4 presents and discusses the empirical results of

the analysis. Finally, Section 5 is dedicated to some conclusive remarks.

1 Conceptual Framework

In his classical taxonomy of knowledge spillovers, Griliches (1979) distinguishes between hori-

zontal, vertical, and technological spillovers, which respectively operate between firms that are

related in product markets, in supply chains or in technological domains. Scholars occasionally

amend this list by adding geographic spillovers, on the grounds that the easier communication

due to spatial proximity expedites the exchange of ideas. However, listing spatial proximity as

separate from other types of spillovers can be argued as misleading. Reduced communication

costs, in fact, affect all forms of interactions that lead to the emergence of spillovers, across and

within industries. The role of geography is perhaps best interpreted in terms of different ag-

glomeration forces which, since Marshall (1890), are typically invoked in order to explain the

emergence of productivity advantages due to co-location. In what follows, I interpret the clas-

sification of agglomeration forces by Duranton and Puga (2004), which builds upon the original

Marshallian analysis, in a context of knowledge or – more specifically – patent production that

involves both ordinary inventors and superstars.

The first agglomeration force is sharing, which is generally about the advantages from the

use of common inputs by multiple firms or agents. In the context of knowledge production, dif-

ferent inventors might benefit from easy access to the same local superstar. The second force

is matching, which results from the increased likelihood of generating appropriate matches be-

tween inputs and their buyers if both types are more numerous in one place. For example, in-

ventors (and superstars) with specific characteristics might more easily pair up with colleagues

with the right, complementary skills if they can search among a larger local pool of scientists.

The last force is learning, which generally gives rise to productivity and technological enhance-

ments that are facilitated by spatial proximity. For inventors and superstars this has a straight-

forward interpretation in terms of exchange of ideas. In this paper, I interpret the effect of super-

stars on the residual patent output of their colleagues as a combination of sharing and learning.

Specifically, I hypothesize that the ingenuity of ordinary inventors benefits by learning from

the non-rivalrous, shared knowledge of connected superstars, resulting in more independent

patents. Since both in the thought experiment that motivates the empirical framework and in

the actual analysis I take collaboration networks as given, I do not focus on the role of matching.
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For both interpretation and policy purposes, it is important to characterize in what cases

any measured effect of superstar location on inventor productivity consists of actual spillovers

(externalities), between firms. In this paper, I distinguish between the effect on inventors who

belong to the circle of collaborators and connections of the superstars, and that on other, un-

connected local inventors. The latter effect is certainly an externality; in this paper, I refer to it as

external spillovers. The interpretation is more ambiguous in the case of the superstar’s own net-

work. Clearly, the consequence of the superstar’s spatial proximity on inventors belonging to the

superstar’s organization can be internalized by the latter; thus, one shall not speak of spillovers.

As I document in the next sections, however, superstars maintain collaborations with many in-

ventors whose patents are prevalently assigned to organization different than the superstar’s; in

their case, the effect may constitute an externality.3 Due to this ambivalence, I refer to the conse-

quences of the superstar’s closeness on his colleagues with the more neutral expression internal

effects; nevertheless, in the empirical analysis I also measure this effect separately for inventors

classified as coworkers and as non-coworkers, in order to argue to what extent the internal effect

can be given an interpretation in terms of spillovers. The internal effect on coworkers, while not

an externality, is nonetheless an interesting quantity to measure per se, as it adds to studies that

document how within-firm productivity depends on the quality of workers’ interaction (Mas

and Moretti, 2009; Bandiera, Barankay and Rasul, 2010).

It is useful to fix ideas and relate these concepts to the variables employed in the empirical

analysis by means of some simple formalism. Consider a set of inventors I of which superstars

are a subset S ⊂ I .4 In addition, consider a set of cities C . For every superstar i ∈ S , the net-

work of local collaborators in city c ∈ C is expressed as Ni c ⊂ I \ S . Now, denote any inventor

of such a network as n ∈Ni c , and express the circumstance where n is also a coworker of the su-

perstar s through the binary indicator C i
n = 1, with C i

n = 0 if the two inventors are not coworkers.

Similarly, write G i
n = 1 if superstar i lives in the same city c as inventor n, and G i

n = 0 otherwise.

Finally, call P T
n > 0 the total number of patents produced by inventor n, of which P i

n > 0 are real-

ized jointly with superstar i , while a number Pn > 0 are obtained independently (P T
n = P i

n +Pn).

With this notation in mind, the expected production function of inventor n, conditional on C i
n

and G i
n , can be written as:

E
[

P T
n

∣∣C i
n ,G i

n

]
= E

[
P i

m

∣∣∣C i
n ,G i

n

]
+E

[
Pm |C i

n ,G i
n

]
= E

[
P i

m

∣∣∣C i
n ,G i

n

]
+π0 +π1C i

n +ρ0G i
n +ρ1C i

nG i
n

(1)

3The effect of superstars’ proximity on connected inventors in other firms may also be internalized. In the case
of R&D joint ventures that involve the superstar’s firm, for example, these productivity advantages might be taken
into account by the partnering firms at the time of establishing the relationship.

4Here I use the term “superstars” loosely. In fact, this setup can also accommodate the so-called mavens from
the conceptualization by Oettl (2012), that is inventors with non-stellar productivity but high “helpfulness.”
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where E
[

P i
m

∣∣C i
n ,G i

n

]
is left unrestricted.5 Consider instead the set Mi c of all inventors who live

in city c, but are not connected with the superstar i (for simplicity, I assume that they cannot

be coworkers of i either), with Ni c ∩Mi c =®. I write the expected patent production Pm of an

inventor m ∈Mi c as follows.

E
[

P T
m

∣∣G i
m

]
=σ0 +σ1G i

m (2)

It is straightforward to attribute to the parameters of (1) and (2) an interpretation in terms of

the concepts discussed above. Consider first equation (1), and specifically the expected produc-

tion of residual patents Pn . There, parameters ρ0 and ρ1 represent the overall internal effect due

to the superstar’s spatial proximity, respectively for non-coworkers and for coworkers. Param-

eter π1 instead measures the productivity advantages that inventor n enjoys by simply being a

coworker of superstar i ; these may also be thought as the consequence of some sort of learning

effect that is made easier by interacting in the same organization, but is independent of physical

closeness. In equation (2) instead, σ1 represents the external spillovers that a superstar exerts,

on average, on all the other inventors in a city. Note that (1) and (2) are to be interpreted here as

steady-state relationships deprived of a temporal dimension. By the event study methodology

adopted in this paper, one can evaluate the parameters that depend on G i
n as the long-run dif-

ferences between inventors that receive and those that lose proximity the superstar, while at the

same time investigating the dynamics of the adjustment process.

This setup is stylized, but allows to make meaningful considerations about the effectiveness

of place-based policies targeting R&D, patent production and innovation. The analysis of place-

based policies is generally framed in a spatial equilibrium model à la Rosen (1979) and Roback

(1982), see e.g. Glaeser and Gottlieb (2008, 2009); Moretti (2011); Kline and Moretti (2014) for

more recent extensions. These models generally feature multiple cities populated by different

firms; workers (possibly of different type) that choose their location on the basis of their place-

specific wage and other factors that affect their utility; and a general equilibrium analysis of the

local labor markets. The main insight delivered by these models is that place-based policies can

be efficient, and enhance aggregate output, only if agglomeration externalities are sufficiently

strong. The intuition is that only in this case can a place based policy re-allocate employment

in such a way that the gain obtained in one place is larger than the loss experienced elsewhere.

A symmetric conclusion can be extended to the setting under analysis.

5This expression for expected patent production nests an O-Ring (Kremer, 1993) production function. To see
this, write the residual patent production as E

[
Pn |C i

n ,G i
n

]= qn and suppose that the patents produced jointly by n
and i are a linear function of n’s independent productivity qn : E

[
P i

n

∣∣C i
n ,G i

n

]= (Qi −1) qn , where Qi > 1 is a measure
of superstar i ’s overall “helpfulness.” In this case, (1) assumes the multiplicative form E

[
P T

n

∣∣C i
n ,G i

n

] = Qi qn that
is typical of the O-Ring production function, and under appropriate normalizations both qn and Qi can be given
the usual interpretation in terms of quality of the two inventors. This idea can be extended to firms’ patent output
realized by networks of inventors. An O-Ring production function is particularly suitable for modeling intellectual
production, since it highlights the role of complementarities between individual inventors.
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To see why, consider superstar i , two cities c,c ′ ∈ C , and take the associated groups of con-

nected and unconnected local inventors from both cities as given. In addition, let local collab-

oration networks coincide with firms (that is, G i
n = C i

n for all n ∈ Ni c , and similarly for city c ′).

Each network-firm attempts to attract the superstar to their locality by offering a wage; assum-

ing for simplicity that patents translate to currency units one-to-one, the maximum wage W Ni c

that a network-firm is willing to offer is the total productivity gain that the superstar would yield

to the network-firm.

W Ni c =
∑

n∈Ni c

{
E
[

P i
n

∣∣∣G i
n

]
+ (
ρ0 +ρ1

)
G i

n

}
(3)

In equilibrium, the superstar chooses the network-firm that offers the highest wage, thus its

choice internalizes the internal effects ρ0 and ρ1. Social welfare, on the other hand, equals the

total patent production in both cities, and depends on the spatial allocation of the superstar.

SW = ∑
n∈Ni c∪Ni c′

E
[

P T
n

∣∣G i
n

]
+ ∑

m∈Mi c∪Mi c′
E
[

P T
m

∣∣G i
m

]
(4)

Clearly, the social optimum is guaranteed to coincide with the equilibrium outcome if external

spillovers are zero, that is if σ1 = 0. Intuitively, a place-based policy that attempts to re-allocate

innovative activity can be motivated in aggregate terms only so long as the benefits extend to

unrelated local innovators.6 This result is easy to generalize to multiple locations, as well as

multiple superstars and their associated networks. If firms and local networks do not coincide,

superstars may not internalize the internal effect ρ0 on connected non-coworkers, but the main

qualitative conclusions would remain unchanged.

2 Data and Relocation Events

This section is divided in two parts. In the first part I introduce the data, commenting on the

steps taken in order to reconstruct paths of inventors’ mobility. In the second part I describe in

more detail the relocation events that involve superstars.

2.1 Inventor Data

In this study I utilize the patent dataset elaborated by Morrison, Pammolli and Riccaboni (2017)

– henceforth MPR. This is a comprehensive elaboration of about 8.5 millions patents granted by

the US Patent and Trademark Office (USPTO), by the European Patent Office (EPO) or under the

6Even then, short of introducing centrifugal forces into the model, the main policy recommendation would be
that of spatially segregating R&D and innovative activity, which may not be necessary since these activities are
already considerably spatially concentrated in advanced economies.

7



framework of the Patent Cooperation Treaty (PCT) since 1974, and whose application dates pre-

cede 2015. MPR apply a geolocalization algorithm in order to assign specific geo-coordinates to

all addresses associated with any inventor-patent combination (this is a novel feature for such

a comprehensive patent database). The accuracy of the geolocation varies, but it is satisfacto-

rily good in the case of US, Canadian and European inventor-patents. In addition, MPR apply a

disambiguation algorithm similar to the one by Li et al. (2014) in order to distinguish individual

inventor identities in the data. They further refine the disambiguation algorithm by incorporat-

ing their geolocation output as one of its inputs,7 and they also extend it to patent assignees, to

which MPR assign unique identifiers.

As a further step, I select 6,762,683 patents with at least one inventor out of 3,139,253 who

are geolocated in either North American or Europe, and I employ the geo-coordinates provided

by MPR in order to attach each inventor-patent to a city. In particular, I utilize definitions of

statistical “metropolitan area” which are as homogeneous as possible across the US, Canada

and Europe. They are: i. the 2013 definition of Core Based Statistical Area (CBSA) in the US; ii.

the 2011 definition of Census Metropolitan Area (CMA) of the Canadian Census; iii. the 2011-

2014 definition of “European City” (EC) provided by Eurostat. These definitions, while differing

in their specific details, are based on a common principle: a larger metropolitan area is defined

in terms of the possibility to commute within its borders; hence, the urban area in question

constitutes a single local labor market. This choice implies that the external spillovers that I

attempt to estimate in the empirical analysis are confined within commuting zones.8

Table 1: Relocation Example 1

Inventor No. Patent No. Name on Patent App. Year City ID Sequence
17380242 US1369841 JOHN SMITH 1987 114 1
17380242 US6432207 J. SMITH 1989 114 1
17380242 US5578017 JOHN SMITH 1990 114 1
17380242 US6047949 JOHN SMITH 1990 114 1
17380242 US6841760 JOHN SMITH 1991 114 1
17380242 US1086679 SMITH, J. F. 1991 876 2
17380242 US6184582 JOHN SMITH 1992 876 2
17380242 US5219248 JOHN SMITH 1994 876 2

By attaching inventor-patents to cities I can track inventors’ mobility. Unsurprisingly, the

vast majority of inventors in the sample (91.35%) are associated to patents filed from a single

urban area, and less than 2% realize patents from more than two different cities over the course

7In fact, the dataset is constructed by letting the disambiguation and the geolocation algorithm “speak” and feed
back on each other following an iterative procedure. Consult the paper by MPR for the details.

8Singh and Marx (2013) show that even controlling for distance, patent citations are more likely within US state
or CBSA borders. Thus, metropolitan areas are arguably a relevant dimension of knowledge diffusion.
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of their life. The typical pattern of patent-level information for individuals who have been relo-

cating across cities is sharply discontinuous, denoting well-defined moving episodes. An exam-

ple of this, fabricated for illustratory purposes, is represented in Table 1. The residence address

of this hypothetical individual (John Smith9), as indicated on patent applications, is associated

to two different urban areas corresponding to two consecutive “sequences”: one for patent ap-

plications received until 1991, and the other one for later patent applications. In such a case,

the data would unambiguously inform that inventor John Smith has moved to a different city in

1991, which defines the event year of Mr. Smith’s relocation event.

In a minority of cases, however, the data are less unequivocal, because multiple urban areas

overlap within time periods of varying length. This might happen for a variety of reasons: for

example, an inventor collaborates across multiple laboratories at the same time, he or she visits

some institutions for a short period of time, or perhaps really has multiple residences (but can

only report one at a time). To deal with such instances, I assign inventors to cities according to

the following procedure: i. I first split the patent history of each inventor into temporal intervals,

which are delimited by the years when a different city occurs for the first time; ii. to each of these

intervals I assign a unique city by choosing the one that is observed most frequently; ties are

resolved conservatively in favor of the city that occurred earlier in the inventor’s patent history;10

iii. final “sequences” and event years are defined.

Table 2: Relocation Example 2

Inventor No. Patent No. Name on Patent App. Year City ID Sequence
04857953 EP8414094 PAUL VOGEL 1989 417 1
04857953 EP2110077 PAUL VOGEL 1992 417 1
04857953 EP5644092 PAUL VOGEL 1992 417 1
04857953 EP2648021 PAUL VOGEL 1993 559 2
04857953 EP9477426 PAUL VOGEL 1994 559 2
04857953 EP2769154 P. VOGEL 1994 417 2
04857953 EP1180159 P. VOGEL 1995 559 2
04857953 EP4079703 P. W. VOGEL 1996 271 2
04857953 EP7219492 P. W. VOGEL 1996 559 2
04857953 EP8716910 P. W. VOGEL 1997 559 2
04857953 EP5948404 P. W. VOGEL 1998 271 2

To clarify the procedure, I provide another constructed example in Table 2. In the case of

Paul Vogel, another imaginary inventor, three cities appear on record: one corresponding to his

first registered patent in 1989, a second one appearing in 1993, and a third city which occurs

9Notice how the name reported on patents differs in this constructed example. This illustrates the importance
of disambiguating individual identities in patent data by exploiting available information (such as uniformity in
the residence address, patent class, names of collaborators and so on).

10This also helps dealing with potential issues of incorrect address geolocation; see MPR paper for more on these.
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twice, in 1995 and 1998. I would easily assign the first city (ID 417) to the time interval 1989-

1992. Between 1993 and 1995 the second city (ID 559) is the one that is observed most often.

Finally, between 1996 and 1998 both the second and the third city (ID 271) occur with equal

frequency; thus I assign the earlier city to the last time interval. As a result, if this piece of data

were real, I would define two inventor-city sequences delimited by the event year 1993, when

Mr. Vogel would have moved from city 417 to city 559.

2.2 Moving Superstars

I restrict the analysis of inventor relocation to “superstars,” who are defined as the individuals

in the top 5% of the distribution of patents per inventor. Individuals with more than 18 patents

fall in this category. Superstar inventors are considerably more mobile than other individuals. A

staggering percentage of 21.5% is characterized by one relocation event as defined in the previ-

ous part of this section, and about 5% by more than one event. More prolific superstars seem to

be, as expected, slightly more mobile. Throughout the rest of this study I subdivide superstar in-

ventors in three subgroups by their position in the patents distribution. I adopt an astronomical

terminology for this classification, and I call “Dwarves” the inventors between the 5% and the

1% percentiles; “Giants” those between the 1% and the 0.5% quantiles; and “Bright” Giants the

individuals in the top 0.5% of the distribution (the 1% and 0.5% cutoffs are respectively 51 and

72 patents). The number of individuals in each of these three groups, broken down by number

of observed moves, is reported in Table 3. I find it worthwhile to distinguish between ordinary

and bright giants, so to ascertain if the size of any estimated effect varies monotonically as a

function of a star’s position in the patent distribution.11

Table 3: Number of Moves by Superstar Group (1975-2012)

Group Dwarves (%) Giants (%) Bright (%)

0 Moves 90,625 (74.9%) 10,182 (68.5%) 10,118 (66.5%)
1 Move 25,021 (20.7%) 3,644 (24.5%) 3,866 (25.4%)
2 Moves 4,560 (3.7%) 832 (5.6%) 943 (6.2%)
3+ Moves 826 (0.7%) 213 (1.4%) 297 (1.9%)
Total 121,032 (100%) 14,871 (100%) 15,224 (100%)

The event study analysis reported in this paper examines the patent consequences of super-

stars’ relocation up to six years before and after the event, for a total of thirteen years. As it is

typical in event studies, this demands a careful selection of the events sample. First, I exclude

11Choosing a cutoff at 0.5% results in a symmetrical split of the top 1% of the distribution, which contrasts with
the fact that the dwarves’ group is one order of magnitude larger than the other two. While the 1% cutoff is clearly
symbolic, opting for a more restricted definition of “bright giants” results in too small a subsample.
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multiple moves of the same superstar inventor that are not at least 13 years apart (as Table 3

suggests, this implies a negligible loss of data). In addition, I restrict the analysis to relocation

episodes spanning from 1980 to 2000: by selecting this temporal window, I am able to utilize

observations as early as 1974 for 1980 events and as late as 2006 for 2000 events. I remove later

events on purpose, since the patent grant lag disproportionately affects patent outcomes for

later years, with consequent issues of interpretation that are particularly severe for citation-

based measures. While this choice implies a loss of about 8,000 moves, the results are not sub-

stantially affected by it.12 The final sample is based on 12,687 events; it is a panel in event year

that is balanced for the first six leads and lags around each event. The number of selected events

in each year is displayed for each group of superstars in Figure 1: notably, it increases over time

for dwarves and giants alike.

Figure 1: Number of Relocation Events in Each Year

In addition, I classify relocation events by geographical scope of the move and by technolog-

ical field. In terms of geography, I distinguish whether the move happened between two urban

areas of North America (US and Canada), two European Cities, or rather it implicated crossing

the Atlantic (in either direction). I also assign macro-technological areas to the events, on the

basis of the prevalent field of the moving star’s patents. In particular: i. I select the first World

12In a previous versions of this work the final sample included 2001-2006 events. The associated results, available
upon request, were very similar to those in the present article. Arguably, the use of a balanced panel in event date
combined with the inclusion of year-specific effects allowed to eliminate most if not all the bias due to the patent
lag truncation problem.
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Intellectual Property Organization (WIPO) technological class which is reported on each patent,

ii. I match it to one of six WIPO macro-classes (Chemistry, Biotech-Pharmaceutical, Electrical

Engineering and ICT, Instruments, Mechanical Engineering, Others); and iii. finally, I associate

one of these macro-classes to a superstar-event, so long as the former appears in at least 75%

of all the patents of the superstar in question. This stringent criterion implies that about 40% of

all events, arguably those related to the most eclectic superstars, are not classified within any of

the six WIPO macro-areas (which also include the residual category “Others”).

Table 4: Breakdown of Moves by Geographical Scope and Technological Field (1980-2000)

Technological Field
Within
North

America

Europe to
North

America

North
America

to Europe

Within
Europe

Total

Chemical 1,618 108 87 1,336 3,149
(12.75%) (0.85%) (0.69%) (10.53%) (24.82%)

Biotech-Pharma 397 13 22 124 556
(3.13%) (0.10%) (0.17%) (0.98%) (4.38%)

Electrical eng. & ICT 1,589 102 102 430 2,223
(12.52%) (0.80%) (0.80%) (3.39%) (17.52%)

Instruments 539 22 18 108 687
(4.25%) (0.17%) (0.14%) (0.85%) (5.41%)

Mechanical engin. 414 25 21 475 935
(3.26%) (0.20%) (0.17%) (3.74%) (7.37%)

Others 48 5 1 16 70
(0.38%) (0.04%) (0.01%) (0.13%) (0.55%)

Unclassified 3,546 171 103 1,247 5,067
(27.95%) (1.35%) (0.81%) (9.83%) (39.94%)

Total 8,151 446 354 3,736 12,687
(64.25%) (3.52%) (2.79%) (29.45%) (100.00%)

The relative frequency of all events characterized by the same combination of geographical

scope and technological field, along with marginal frequencies, is reported in Table 4. The vast

majority of all the events (about 64%) involves a move within North America, while about 30% is

internal to Europe. Less than 7% of all the moves is trans-Atlantic, with a prevalence of those di-

rected from east to west. The geographical scope of the events at the level of metropolitan areas

is graphically displayed by the two maps A.1 (North America) and A.2 (Europe) in the Appendix.

Unsurprisingly, most of the action revolves around the major US urban centers, the Rhine basin,

London and Paris. In terms of WIPO technological macro-classes, the largest share of classified

superstar-events are in the chemical field (25% of all the events) and in electrical engineering

and ICT (17.5%). The others are split between mechanical engineering (7.4% of the grand total),

instruments (5.4%) and the biotech-pharmaceutical sector (4.4%).
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3 Empirical Methodology

In the first part of this section I discuss the thought experiment that informs the empirical anal-

ysis and the associated regression framework. In the second part I introduce the different out-

come measures employed in the estimates, along with some descriptive statistics.

3.1 Studying Relocation Events

It is useful illustrate the thought experiment on which the empirical analysis is based through

a stylized example. Figure 2 represents the relocation event of a superstar inventor, along with

his or her collaboration network. The superstar in question (the larger node) moves from City O

(‘Out’) to City I (‘In’), and has collaborators in both places – as well as some that do not reside in

either city. The event study featured in this paper evaluates the impact of the relocation event

on the residual patent outcomes of two groups: the “blue” nodes in the graph – connected in-

ventors in the locality of destination – and the “red” nodes – those in the city left behind. If the

superstar’s spatial proximity generates local productivity effects, one should expect a positive

effect on the former and a negative effect on the latter. While the graph does not distinguish

between collaborators who are also coworkers against non-coworkers, in the analysis I attempt

to measure the effect separately for the two groups in question by exploiting information about

patent assignees. In addition, the impact of the event is evaluated against the patent output of

all other non-connected inventors in either City O or City I , who are identified residually.

City O (‘Out’) City I (‘In’)

Superstar

Figure 2: A Moving Superstar and Local Coauthorship Networks

In the actual analysis, a superstar’s “connection” is defined as one inventor who has signed

a patent application jointly with the superstar within an interval of six years before or after the

relocation event. Therefore, networks are static, implying that the results are not driven by the
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varying composition of the network, but by changes in the propensity to independently produce

new knowledge. To avoid further issues of confoundedness, other mobile superstar inventors

are excluded from the construction of local networks.13 Finally, I classify individual connections

as “coworkers” or “non-coworkers” whether the prevalent assignee associated with the patents

of both the superstar and his or her linked collaborator coincides; this assignment is performed

twice for each connected inventor, both before and after the event.14 Summary statistics about

the average size of superstars’ local networks in both types of cities over the years are reported in

Figure 3; team size appear to increase twofold over time, from an average of about 4 connections

in 1980 to an average network size around 8, for both types of local network.15 In addition, Figure

3 reports the analogous statistics restricted to connected inventors who are also coworkers of the

superstar. Since coworkers appear to be a robustly constant fraction of total connections over

time – about two thirds – the corresponding trends parallel closely the overall averages.

Figure 3: Average Network Size by group

13However, the few mobile non-superstar inventors are included. They enter a superstar’s local network for a
given statistical metropolitan area if they are assigned to that particular city on the superstar’s event year.

14That is, an inventor connected with a superstar can be classified as a coworker before the event and as a non-
coworker after the event, and vice versa. This should account for cases of joint mobility within the network.

15Interestingly, breaking down this analysis by superstar group does not reveal that to a more prolific superstar
usually corresponds a higher number of local connections. In fact, typically the collaboration networks of non-
bright “Giants” are, on average, larger than those of “Dwarves,” but smaller than those of “Bright” Giants. This
can be explained by the fact that superstars in higher quantiles have a disproportionate number of connections
dispersed across places where they have never been residing.
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In order to estimate the internal effects and external spillovers associated with this thought

experiment, I employ a standard event study framework, which is common to all the estimates

featured in this paper. To characterize the econometric model, let again i ∈ S be a superstar,

and denote: i. the event date as s (i ) ∈ {1980,1981, . . . ,2000}; ii. a set of 2K̄ +1 dummy variables

as D =
{

D−K̄ , ·,Dk , ·,D K̄
}

, where Dk
i ct = 1 [t = s (i )+k] for every integer k with −K̄ ≤ k ≤ K̄ ; iii.

two additional “lower” and “upper” bound dummies as D`
i ct and Du

i ct , which are respectively

defined as D`
i ct =1

[
t < s (i )− K̄

]
and Du

i ct =1
[
t > s (i )+ K̄

]
. The model reads as:

Yi ct =αi c +
K̄∑

k=−K̄

βk Dk
i ct +γ`D`

i ct +γuDu
i ct +δct +εi ct

β−1 = 0

(5)

where c ∈ {I ,O} denotes either the city of destination or that of departure, while t = 1975, . . . ,2006

indexes the year when the outcome variable Yi ct – some measure of patent counts – is observed.

In this model, the estimates of parameters
{
β−K̄ , . . . ,β0, . . . ,βK̄

}
track the effect of the event

on the outcome of interest Yi ct over time. The advantage of the event study framework relative

to a simple regression model with a binary treatment – such as those expressed in equations (1)

and (2) – is that it allows to visually examine the extent of potential endogeneity through the es-

timation of the “pre-trend” parameters βk ′ with k ′ <−1. In the case in question, if the timing of

the event correlates with changes in the patterns of productivity of different groups, this should

be visualized in terms of non-parallel pre-trends for the two groups. If, for example, the location

choice of superstars is often at least in part driven by the observation of increasing productivity

of their actual or potential local collaborators in the ‘In’ city, one should expect a steeper pre-

trend for the ‘In’ group relative to the ‘Out’ group. In order to facilitate this assessment, it is

useful to re-estimate the model – for each outcome Yi ct subsequently detailed – by employing

the following dependent variable.

Di t = Yi I t −YiOt

I call Di t the In-Out difference measure. Note that all the coefficients
{
β−K̄ , . . . ,β0, . . . ,βK̄

}
of the

In-Out difference model are, by construction, the difference between the corresponding coeffi-

cients for the outcomes Yi I t and YiOt ; therefore, any non-flat estimated pre-trend for the In-Out

differenced model should be interpreted as a warning sign of endogeneity.

In this study I set K̄ = 6, so that the model can be estimated on the 1975-2006 sample for

all events occurred between 1980 and 2000. All regressions include event-city fixed effects αi c ,

which control for local time-invariant characteristics (like network size), and time effects δct .

The model is estimated via OLS and the standard errors used to construct confidence intervals

are all clustered at the superstar-event level.
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3.2 Patent Outcomes

In order to evaluate internal productivity effects at the local network level, I estimate the effect

of superstar relocation on eight alternative patent outcome variables Yi ct . I start with defining

the simplest measure, the pure patent count. For the superstar-event i , city c ∈ {I ,O}, network

Ni c and year t the “pure patent count” Yi ct = Pi ct of the corresponding network is given by

Pi ct =
∑

n∈Ni c

p̂ni t

where p̂ni t is the residual number of patent applications of inventor n in year t (that is, patents

not realized jointly with superstar i , a property denoted by the hat in p̂). While all empirical

estimates control for network size, the pure patent count might not be a meaningful measure

given the large variation in the dimension of the local networks of superstars. To account for

this one may alternatively look at average patent count, dividing Pi ct by network size |Ni c |.

P̄i ct = 1

|Ni c |
∑

n∈Ni c

p̂ni t

Another issue is that some technological fields are characterized by larger team sizes, which

often result in patents under the name of many inventors. This fact may bias the analysis in

either way, should the superstar relocate to an area closer to a group of collaborators with rela-

tively more researchers per project, or vice versa. In order to address this, I also employ residual

patent shares ŝni t . A patent share is the inverse of the number of authors of a patent; in the case

of a patent with three authors, for example, the share of each author is 1/3. Shares sni t of patents

realized jointly with the superstar are once again discarded. The share count P̃i ct is the sum of

all patent shares of inventor i . In analogy with average patent count, I also consider the average

share measure ˜̄Pi ct which just like P̄i ct accounts for heterogeneous network size.

P̃i ct =
∑

n∈Ni c

ŝni t

˜̄Pi ct = 1

|Ni c |
∑

n∈Ni c

ŝni t

Figure 4 displays the averages of the patent count Pi ct and the patent shares P̃i ct measures at

the event-year level from 1976 to 2006, for networks networks located in both “In” and “Out”

cities. These descriptive statistics show that until 2000, the networks left behind by the moving

superstar are typically more innovative than those that are joined, although the early 2010’s sug-

gest a reversal of this trend. Identical patterns are observed by looking at the average measures

P̄i ct and ˜̄Pi ct (not reported in Figure 4 for clarity).
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Figure 4: Network-level Patent Count averages, by year

None of these alternative measures account for patent heterogeneity – while certainly some

patents are more valuable than others. A frequently used proxy of patent quality is the number of

citations; thus I also estimate the effect of the events on appropriate citations-weighted patent

outcomes. The citation-weighted analogues of Pi ct , P̄i ct , P̃i ct and ˜̄Pi ct are, respectively:

Bi ct =
∑

n∈Ni c

b̂ni t

B̄i ct = 1

|Ni c |
∑

n∈Ni c

b̂ni t

B̃i ct =
∑

n∈Ni c

ẑni t

˜̄Bi ct = 1

|Ni c |
∑

n∈Ni c

ẑni t

where b̂ni t is the citation-weighted, residual patent count of inventor n and ẑni t is the citation-

weighted analog of ŝni t .16 In order to account for the so-called “truncation problem” of patent

citations – the fact that more recent patents have yet to receive citations at the time they are

16I provide here more formal definitions of p̂ni t , b̂ni t , ŝni t and ẑni t , not given in the text for the sake of easier
legibility. Define K as the set of all patents, |K| = K , and index patents by k = 1, . . . ,K . Notation Pnt denotes the set
of patents for which inventor n filed an application in year t . Define Nk as the number of authors of patent k, while
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observed – I apply the correction method devised by Jaffe and Trajtenberg (1996) and employed,

among the others, by Hall et al. (2001, 2005).17 Note that all network-based measures described

so far are also separately calculated for the coworkers and non-coworkers subgroups that are

associated with each superstar network.

For the estimation of external spillovers I use an analogous set of measures, one which is

based on the residual set of non-connected local inventors Mi c . The city-wide patent count

measure Ci ct – the analogue of Pi ct – and the corresponding average count C̄i ct (which is nor-

malized by the number |Mi c | of non-connected inventors in a city) are defined respectively as:

Ci ct =
∑

m∈Mi c

p̂mi t

C̄i ct = 1

|Mi c |
∑

m∈Mi c

p̂mi t

and C̃i ct , ˜̄Ci ct , Gi ct , Ḡi ct , G̃i ct and ˜̄Gi ct are defined similarly, where here G denotes patent or

shares measures that are weighted by citations (like B in the case of network-level measures).

Figure 5 reports summary statistics about average city patent counts C̄i nt and average patent

shares ˜̄Ci nt that are analogous to those from Figure 4 about local networks.18 It appears that

“Out” cities are slightly more innovative than “In” cities throughout the time interval under con-

sideration. Remarkably, the time trends of all these averages looks noticeably similar for both

“In” and “Out” localities, showing little systematic association of superstars’ moving choices

with changes in local innovativeness.

Ck is the associated truncation-adjusted citation weight. The definitions are as follows.

p̂ni t =
K∑

k=1
1 [k ∈Pnt ∧k ∉P i t ]

ŝni t =
K∑

k=1
1 [k ∈Pnt ∧k ∉P i t ] · 1

Nk

b̂ni t =
K∑

k=1
1 [k ∈Pnt ∧k ∉P i t ] ·Ck

ẑni t =
K∑

k=1
1 [k ∈Pnt ∧k ∉P i t ] · Ck

Nk

17This method is based on two stages. The first stage is about estimating the empirical distribution of the forward
citation lags, usually through a flexible specification of a double exponential distribution with parameters differing
by technological field. In the second stage, one divides the number of actually observed citations for a patent by the
estimated fraction of patents in the corresponding lag year for similar patents (this correction can be very imprecise
for the more recently observed patents with few observed lag years; note that while 2007-2014 patents are used for
estimating the citation model, they are excluded from the actual analysis). I apply an extension of this method to
the MPR data; the estimation details, its results and the calculated weights are available upon request.

18The statistics from Figure 4 can be thought as yearly weighted averages patent counts across metropolitan areas,
with weights corresponding to the share of “In”-“Out” events for each city in every year.

18



Figure 5: City-level Patent Count averages, by year

4 Event Study: Empirical Results

In this section I discuss the empirical results from the event study analysis. Along with present-

ing the baseline results at the network and city level, I break down the estimates by coworker

status, superstar group, geographical scope of the event, and technological macro-field. All es-

timates of the relevant parameters
{
β−6, . . . ,β0, . . . ,β6

}
from model (5) are reported in graphical

form, as it is customary in event studies.

4.1 Baseline Results: Network-level Measures

Figure 6 reports the estimates of coefficients
{
β−6, . . . ,β0, . . . ,β6

}
from three regressions based

on model (5): one where the dependent variable is pure patent count measures Pi ct for the “In”

network, one for the “Out” network, and a third one for the In-Out difference measure Di t . The

estimates show that before the event both networks enjoyed rising, almost identical and statisti-

cally indistinguishable trends in the number of yearly patent applications (increasing by about

1 more patent per year over six years). After the event, the patent output of the “In” network

rises more markedly to eventually stabilize at around 0.8-1 extra patents relative to the baseline

year. Conversely, the productivity of the “Out” network undergoes a constant decline since the

second year following the event, resulting in about 0.5 less patents per year relative to the base-
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line after six years. The observed lag in the trend reversal experienced by these inventors might

be tentatively attributed to the nature of R&D activity: following the event, the collaborators left

behind by the superstar might keep elaborating for a while on research projects and ideas whose

seeds were sown at the time when the superstar used to be physically close.

Figure 6: Network-level Estimates, Patent Counts Pi ct

The same pattern is registered for all other network-level measures that are not weighted by

citations. Figure 7 displays the results corresponding to the average patent counts measure P̄i ct .

The temporal trends about the estimated coefficients are identical to those from Figure 6. This

indicates that the results are not driven by differences in network size (the superstars might, say,

move from “small” to “large” networks) that are possibly not adequately captured by the fixed

effect αi c . Similarly, the results do not seem to be caused by differences in the size of research

teams responsible for the “In” and “Out” patents: in fact, the estimates relative to the share

count measure P̃i ct (not shown for brevity) and those for the average share count measure ˜̄Pi ct

(shown in Figure 8) display identical patterns. Estimates about average measures are more easily

related to individual productivity. In particular, they indicate how relative to the baseline year,

in the long run inventors from the “In” network improve their performance versus those from

the “Out” network by about 0.16 extra residual patents p̂, or almost 0.08 extra residual fractional

patents ŝ. Moreover, the losses experienced by the losing group erase on average about one half

of the productivity gains that are experienced in the years leading to the event.
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Figure 7: Network-level Estimates, Average Patent Counts P̄i ct

Figure 8: Network-level Estimates, Average Patent Shares ˜̄Pi ct

21



In Figure 9 I report the results relative to the citation weighted average patent count measure

B̄i ct . Unlike in the case of unweighted measures, the estimated quality of the residual patents

due to the “In” Network also registers a relative decline which starts 3-4 years after the event. A

possible interpretation of these results is that the superstar’s internal effect is indeed limited in

time, but is also associated with an advantage of reputational kind – that is, individuals associ-

ated with a local superstar may become better able to achieve a higher number of low-quality

patents, potentially crowding out the good ones.19 If this hypothesis were true, it would rep-

resent a less unambiguously positive social effect associated with connecting to superstars.20

Connected inventors in the “Out” network, instead, experience even a more marked decline of

their independent production relative to the previous results, and in this case without a very

visible lag. As a result, the In-Out difference measure for to these estimates switches to about

0.3 more citation-weighted patents for the “Out” group six years before the event (relative to the

baseline) to about 1.6 more counts in favor of the “In” group. The results for the other three

citation-weighted measures (Bi ct , B̃i ct and ˜̄Bi ct ) are not shown here, but are analogous.

Figure 9: Network-level Estimates, Citation Weighted Average Patent Counts B̄i ct

19One could argue that this result is due to measurement error, which is amplified by the truncation correction
procedure, which disproportionately affects later dates – with increased error. However, I obtain similar results
by weighting only for forward citations received after five years from the patent application; with this procedure,
measurement error should not disproportionately affect patents from later years.

20It is difficult to provide a precise judgment about this hypothesis with the present data, but the issue certainly
deserves further investigation.
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Given the striking similarity between the pre-trends of the two groups across all these esti-

mates, it is unlikely that the results are driven by the endogenous choice of superstars (due to,

say, an inclination of superstars to move from relatively “worsening” to relatively “improving”

networks). In fact, the clean shape of the curves traced out by all In-Out difference estimates

– about flat before the event, approximately flat in the years following the adjustment phase –

suggests that endogeneity issues are unlikely to play a role in explaining the results. Arguably,

the location choices of successful inventors are perhaps only marginally affected by the relative

quality of their local collaborators. By walking one one step ahead, one can interpret the long-

run In-Out differences observed six years after the event as twice the structural effects of the

superstars’ proximity on the independent productivity of their collaborators, as it is expressed

in equation (1) of the conceptual framework, and where the double count records both one net-

work’s gain and the other’s loss. To this end, however, it is necessary to split the results between

the two subgroups characterized in that framework: coworkers and non-coworkers.

4.2 Breaking Down the Results: Coworkers vs. Non-Coworkers

In Figure 10 I report the estimates of model (5) for the average patents P̄i c outcome measure,

split between subgroups of each local network: coworkers and non-coworkers (“others”). Be-

cause collaborators classified as coworkers are about two thirds of the total, normalized mea-

sures of patent output suit this exercise better. In order not to overcrowd the graph, the cor-

responding In-Out differences are not displayed. Overall, the results appear qualitatively sim-

ilar to those from Figure 7, although some differences between coworkers and non-coworkers

are apparent. First, the former enjoy faster pre-trends before the event, regardless of which lo-

cal network they belong to. Second, the post-event differences are much wider for coworkers

than for other collaborators; in fact, the confidence intervals of the βk estimates for “In” and

“Out” non-coworkers do not overlap only for k = 5,6. By relating the long-run differences ob-

served six years after the event to the structural effects of superstar proximity on average patent

output from equation (1), these results reveal parameter estimates of about ρ̂0 ' 0.35 for non-

coworkers, and ρ̂1 ' 0.75 for coworkers – the latter is more than twice the former.

It is useful to reconnect these figures to the earlier discussion about the interpretation of

internal effects. While productivity gains enjoyed by coworkers are certainly interesting from the

point of view of the internal organization of R&D and possibly relate to learning mechanisms,

they can hardly be considered spillovers. Internal effects on non-coworkers, on the other hand,

might be interpreted as spillovers in certain circumstances, but not always (for example, this

interpretation should not apply to the case of R&D joint ventures). The empirical results indicate

that the estimated internal effects overwhelmingly affect coworkers; therefore, the evidence in

favor of spillovers mediated by geography in collaboration networks is limited. In addition, since
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the classification of superstars’ connections as coworkers can switch following the event, part of

the effects reported in Figures 6-9 is likely attributed to cross-firm superstar mobility.21

Figure 10: Network-level Estimates, Average Patent Counts P̄i ct by coworker status

4.3 Baseline Results: City-level Measures

In what follows, I analyze the consequences of superstars’ relocation events on city-level inno-

vation measures, in order to ideally uncover external spillovers. Figure 11 displays the estimates

of model (5) relative to the pure patent count measure Ci ct . The results are less clear-cut than

in the case of network-level outcomes. Following the event, cities of destination innovate more

in relative terms; in the sixth year after the event, the In-Out measure registers an increased dif-

ference of about 85 more patents between the two localities. However, one immediately notices

a difference in pre-trends that is also clearly favorable to “In” cities, which indicates that super-

stars typically move towards places that are already on a track of faster innovation (in relative

terms). Overall, the estimates from Figure 11 cannot be seen as conclusive evidence of external

spillovers at work, and suggest to examine additional city-level outcomes.

In fact, the analysis of other measures casts serious doubts on the external spillovers hy-

pothesis. For example, the estimates relative to the average city-level count C̄i ct are very noisy,

21In order to accurately quantify to what extent the results depend on cross-firm mobility, more precise data
about inventors’ and superstars’ affiliation to firms are necessary.
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Figure 11: City-level Estimates, Patent Counts Ci ct

never statistically different from zero and they display no clear pattern (hence, they are not re-

ported for space reasons); in any event, they do not suggest the presence of any effect on the

average productivity of local unconnected inventors. A clearer picture is offered by the analysis

of citation-weighted average counts Ḡi ct , whose event-study estimates are reported in Figure

12. By controlling for patent quality, it appears that both cities involved in the events experience

similarly decreasing trends in average inventor productivity, with no statistically discernible dif-

ferences. These pieces of evidence can be reconciled with that from figure 11 through a sim-

ple explanation: superstars tend to move to places with faster inventor population growth; the

patent output obtained by the new inventors appearing in these places, however, is typically not

higher while it seems to be of lower quality (as measured by the adjusted number of citations).

In this last respect, “In” cities do not seem to be much different from “Out” locations.

In summary, the city-level estimates do not register relevant external spillovers on inventor

productivity at work, in the sense expressed by parameter σ1 in equation (2) of the conceptual

framework. Consequently, this evidence withdraws support and motivation for “big push” type

of place-based innovation policies, especially those that are aimed at attracting highly skilled

inventors in the hope that they would boost the growth of local high-tech industries. However,

these results still leave open questions about what mechanisms drive the spatial mobility of

superstars. An hypothesis that is worth exploring has to do with the Marshall-DP agglomeration
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force left aside in this empirical analysis, that is matching. Specifically, if superstars pair up

with collaborators of the right skills more easily in cities with a larger inventor population, both

superstars themselves and inventors of various skill levels may endogenously sort across places,

in a way that is consistent with the results from Figures 11 and 12.

Figure 12: City-level Estimates, Average Citation-Weighted Patent Counts Ḡi ct

4.4 Breaking Down the Results: Superstar Heterogeneity

It may be argued that the effects of superstars’ mobility may not be identical if the superstars in

question are responsible for 20 patents, 100 patents, or even 1,000. Thus, it is interesting to re-

examine the results by looking at separate groups of superstars, distinguished by their relative

position in the patent distribution. Figure 13 displays network-level estimates of the overall

internal effect based on average patent counts P̄i ct , and split by the three groups of inventors

defined in Section 2: Dwarves (top 5-1%), Giants (top 1-0.5%) and Bright Giants (top 0.5%). In

the graph, I report both event coefficients relative to the “In” network (in shades of red-orange)

and to the “Out” network (in shades of blue), but for readability I omit confidence intervals as

well as the “In-Out” estimates. It appears that for both “In” and “Out” localities, the post-event

outcomes related to non-bright Giants are higher than those relative to the Dwarves. In the long

run, geographical closeness with a superstar inventor in the lower top 0.1% of the distribution

is associated with about 0.2 more yearly patents per coauthor. Unexpectedly, the converse is
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true for Bright Giants: the post-event outcomes associated with the “top of the top” inventors

are actually lower than for those related to Dwarves, for either local network. Therefore, there

seems to be no monotonic relationship between the position of superstar inventors in the patent

distribution and the internal effects associated with their moves.22 A potential explanation of

this finding is that Bright Giants have collaborators dispersed across wider areas, and thus they

have relatively less opportunities to interact with those residing in their own location.

Figure 13: Network-level Estimates by Group, Average Patent Counts P̄i ct

Figure 14 displays the analogous estimates relative to the city-level patent count measure

Ci ct , distinguished by superstar group.23 Once again, the results are not favorable to the exis-

tence of sizable external spillovers, unless one restricts the analysis to very top superstars. In

fact, the estimates for Dwarves appear similar to those from Figure 11, featuring divergent pre-

trends and small, marginally significant post-trend differences. In the case of the lower group

of top 1% superstars (non-bright Giants) the pre-trends appear coincident; however, while the

“In” cities typically register more patents following the event, the difference with the “Out” lo-

calities is not statistically different from zero. Regarding Bright Giants instead, pre-trends are

22It must be remarked that the differences across these groups are not statistically different from zero. Hence, the
estimates reported in Figure 13 as well as the following Figure 14 must be interpreted as a statistical decomposition
of the overall effects from Figures 7 and 11, respectively.

23While confidence intervals are once again omitted for the sake of clarity, in this discussion I make references
to inference results; more detailed results featuring the estimated confidence intervals for Figures 13, 14 and those
that follow are available upon request.
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not exactly parallel but they are similar enough, while the post event dynamics for the two types

of cities is statistically significant and amounts to an amplified difference of about 100 patents

in favor of the “In” locality six years after the event. This suggests that if external spillovers are

to be found, they may lie in the extreme right tail of the patent per inventor distribution. Note

that this result is consistent with that from Table 13: if very bright stars spread their knowledge

among a larger population, the relative benefit on their direct collaborators is probably reduced.

Figure 14: City-level Estimates by Group, Patent Counts Ci ct

4.5 Breaking Down the Results: Geographical Scope of the Move

In Figure 15 I break down the results about internal effects on local collaborators by the geo-

graphic scope of the superstars’ moves. Specifically, I consider the same geographic classifica-

tion of events summarized in Table 4 (within North America, from N.A. to Europe, from Europe

to N.A., within Europe). The graph reports, for each group, estimates relative to the “In-Out”

differences in average patent counts, Di t = P̄i I t − P̄iOt . As a further step to make the figure eas-

ier to interpret, I once again omit confidence intervals. For moves directed to a North American

city, the estimated post-event differentials are typically statistically significant; notably, in the

case of moves from Europe to N.A. the effect seems to widen twofold in later years, although

the estimated coefficients are not statistically different from those corresponding to the events
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that involve only North American cities. In the case of events directed to Europe, instead, the

estimates generally do not register any statistically significant effect.24 It would be intriguing to

explore further the reasons behind these continental differences, and in particular whether they

are due to institutional differences at play.

Figure 15: Network-level Estimates by Geographical Scope, Average Patent Counts P̄i ct

4.6 Breaking Down the Results: By Technological Macro-Field

Finally, I also look at separate network-level estimates of the internal effect decomposed by

wider technological area. Recall that I assign an event to a macro technological group if more

than 75% of the superstar’s patents fall in a specific category as per the first patent class listed

on each patent, and that this conservative choice implies the loss of about 40% of the event

sample. In Figure 15 I report estimates of the “In-Out” difference in average patent counts P̄i ct

for the five non-residual macro-areas: Chemical (excluding Biopharma); Electrical, Electronic

& ICT; Biotechnology and Pharmaceutical; Mechanical; and Instruments. I omit confidence in-

tervals again. The post-effect estimates appear particularly strong in the case of the Electro-ICT

and Mechanical areas; in these sectors, the post-event differenced coefficients are from two to

five times larger than in the other areas, and are statistically significant. In the other sectors

24In the case of events from North America to Europe, it appears that if an effect exists it reveals itself one year in
advance; however, this may also be an artifact of statistical noise in this particular (small) subsample.
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instead, the estimates appear noisy – especially so in the highly innovative and R&D-intensive

Biopharma sector – and are not statistically significant; however, this may also be due to the

smaller size of the corresponding subsamples.

Figure 16: Network-level Estimates by Technological Field, Average Patent Counts P̄i ct

5 Conclusions

This study analyzes patterns in patent production that precede and follow the relocation of a su-

perstar inventor from one city to another. The objective of the analysis is to separate “internal”

learning effects that benefit the direct collaborators of a superstar, from “external” spillovers that

may affect other local inventors as well. The empirical results show that the location choices of

superstars have very strong effects on the residual productivity of their proximate collaborators:

on average, following the superstar’s move the gain enjoyed by the inventors in the new city of

residence of the superstar and the loss experienced by those in the old city combine into a dif-

ference of about 0.16 more yearly patents per inventor in favor of the former group. By contrast,

there seems to be little to no evidence for external spillover effects on the larger population of

local inventors. Consequently, this study offers little empirical support to policies aimed at at-

tracting leading technological figures to a local area, on the expectation that this would generate

wider agglomeration effects through the action of externalities.
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This study raises more questions than the answers which it attempts to provide. In particu-

lar, why the effect on citation-weighted patents relative to the “In” network declines over time?

To what extent are internal effects explained by superstar mobility between firms? What causes

the co-location of superstars and inventors of lower productivity which is observed by means of

the city-level analysis? What is exactly the role of “very bright” giants, and do at least they cause

external spillovers upon larger populations of inventors? Finally, why no internal effects due

to superstars’ proximity are observed at play in European networks? Each of these questions is

relevant enough to motivate a separate analysis, to which deservedly devote some future work.
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Appendix: Maps of Relocation Events

Maps A.1 and A.2 display the geographical scope of superstars’ moves. Events internal to North

America are shown by dark blue lines, moves from Europe to North America by light blue lines,

those from North America to Europe by orange lines, and intra-European events by red lines.

Map A.1: Relocation Events in North America. Yellow polygons represent US CBSAs and Canadian CMAs.

Map A.2: Relocation Events in Europe. Green polygons represent “European Cities” (Eurostat definition).


	Conceptual Framework
	Data and Relocation Events
	Inventor Data
	Moving Superstars

	Empirical Methodology
	Studying Relocation Events
	Patent Outcomes

	Event Study: Empirical Results
	Baseline Results: Network-level Measures
	Breaking Down the Results: Coworkers vs. Non-Coworkers
	Baseline Results: City-level Measures
	Breaking Down the Results: Superstar Heterogeneity
	Breaking Down the Results: Geographical Scope of the Move
	Breaking Down the Results: By Technological Macro-Field

	Conclusions

