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A quantitative understanding of societies requires useful combinations of empirical data and
mathematical models. Models of cultural dynamics aim at explaining the emergence of culturally
homogeneous groups through social influence. Traditionally, the initial cultural traits of individuals
are chosen uniformly at random, the emphasis being on characterizing the model outcomes that
are independent of these (‘annealed’) initial conditions. Here, motivated by an increasing interest
in forecasting social behavior in the real world, we reverse the point of view and focus on the
effect of specific (‘quenched’) initial conditions, including those obtained from real data, on the final
cultural state. We study the predictability, rigorously defined in an information-theoretic sense, of
the social content of the final cultural groups (i.e. who ends up in which group) from the knowledge
of the initial cultural traits. We find that, as compared to random and shuffled initial conditions,
the hierarchical ultrametric-like organization of empirical cultural states significantly increases the
predictability of the final social content by largely confining cultural convergence within the lower
levels of the hierarchy. Moreover, predictability correlates with the compatibility of short-term
social coordination and long-term cultural diversity, a property that has been recently found to be
strong and robust in empirical data. We also introduce a null model generating initial conditions
that retain the ultrametric representation of real data. Using this ultrametric model, predictability
is highly enhanced with respect to the random and shuffled cases, confirming the usefulness of the
empirical hierarchical organization of culture for forecasting the outcome of social influence models.

I. INTRODUCTION

Understanding the self-organization and emergence of
large-scale patterns in real societies is one of the most fas-
cinating, yet extremely challenging problems of modern
social science [1]. A prominent field of research studies
the spontaneous emergence of groups of culturally ho-
mogeneous individuals. One of the mechanisms that are
believed to play a key role in this process is social influ-
ence, i.e. the gradual convergence of the cultural traits,
attitudes and opinions of individuals subject to mutual
social interactions. Stylized models of cultural dynamics
under social influence have attracted the interest of an in-
terdisciplinary community of sociologists, computational
social scientists and statistical physicists [2].

One of the prototypical models in this context is the
popular Axelrod model [3], which has been studied in
many variants over the last two decades [4–12]. The
model is multi-agent, with a cultural vector associated
to each agent. One cultural vector is a sequence of sub-
jective cultural traits (opinions, preferences, beliefs) that
each agent possesses, with respect to a predefined set
of features (variables, topics, issues). The dynamics is
driven by social influence, which iteratively increases the
similarity of the cultural vectors of pairs of interacting in-
dividuals. However, interactions are only allowed among
pairs of individuals whose vectors are already closer than

a certain (implicit or explicit) threshold distance, a mech-
anism known as bounded confidence and having its origins
in the so-called ‘assimilation-contrast theory’ [13] in so-
cial science. The intuition behind the model, successfully
confirmed via numerical simulations and analytic calcula-
tions, is that social influence increases cultural similarity,
yet full convergence is precluded by bounded confidence.
The net result is the emergence of a certain number
of cultural domains, each containing several individuals
with identical cultural vectors and mutually separated by
a distance larger than the bounded confidence threshold,
thus no longer interacting with each other. The value of
the model is the identification of a viable, decentralized
mechanism according to which cultural diversity can per-
sist at a global (inter-domain) scale, even if it vanishes
at a local (intra-domain) scale.

Given the focus on the qualitative aspect of such an
emergent pattern, the Axelrod model has been tradition-
ally studied by specifying uniformly random initial con-
ditions for the cultural vectors of all individuals, i.e. by
drawing each cultural trait independently from a prob-
ability distribution that is flat over the set of possible
realizations. Consistently with this uninformative (and
deliberately unrealistic) choice, the focus of many stud-
ies has been the characterization of the outcomes of the
model that are robust upon averaging over multiple re-
alizations of the initial randomness. Since the cultural
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dynamics evolving the initial state is also stochastic, a
second average over the dynamics is also required. We
may therefore say that this is the ‘annealed’ version of
the model. Examples of quantities that are stable across
multiple realizations of uniformly random initial condi-
tions are the expected number and expected size of final
cultural domains. An obvious counter-example is the val-
ues of the vectors ending up in such domains: as follows
from the complete symmetry in cultural space implied by
the uniformity of the initial randomness, such values are
by construction maximally unpredictable.

On the other hand, recent studies have investigated the
model starting from different classes of initial conditions,
beyond the uniformly random one. In particular, empha-
sis has been put on using initial conditions constructed
from empirical data [14–16] and their randomized, trait-
shuffled counterparts – obtained by randomly shuffling,
for each component of the cultural vectors, the empiri-
cal values (traits) of all individuals in the sample. These
studies have emphasized a strong dependence of the final
outcome on the initial conditions. For instance, certain
model outcomes that have an interesting interpretation
in terms of enabling the coexistence of short-term so-
cial collective behavior and long-term cultural diversity
[14] (more details are provided later in this paper) are
found to vary significantly across the classes of empir-
ical, trait-shuffled, and uniformly random initial condi-
tions, while remaining largely stable when considering
different instances belonging to the same class. This sta-
bility implies that empirical cultural data share certain
remarkably universal properties, independent of the spe-
cific sample considered and at the same time significantly
different from those exhibited by random and random-
ized data [16]. This has stimulated the introduction of
stochastic, structural models aimed at capturing the es-
sential properties of the empirical cultural data [15, 17].

Strong dependence of cultural dynamics on the initial
conditions might be a useful property to exploit in the
light of the increasing interest towards forecasting so-
cial and cultural behavior in the real world. Examples
include the predictability of certain aspects of political
elections, public campaigns, spreading of (fake) news, fi-
nancial bubbles and crashes, and commercial success of
new items. If interest is shifted towards the predictability
of future long-term outcomes given certain initial con-
ditions, then a corresponding change of perspective is
implied at the level of modeling. In particular, the afore-
mentioned ‘annealed’ framework, where the outcome of
models of cultural dynamics is averaged over multiple
realizations of the initial randomness, becomes less rel-
evant. On the contrary, if a specific (e.g. empirical)
initial condition is known, it becomes natural to use it
as the single initial specification of the heterogeneity of
the system. Obviously, averaging with respect to differ-
ent random trajectories of the social influence dynamics,
all starting from the same initial cultural state, remains
important and necessary. We may therefore call this the
‘quenched’ version of the model.

In this work we focus for the first time on the pre-
dictability of the social content of the cultural domains
in the final state of the Axelrod model, given a certain
initial state. By social content we mean the composition
of the different domains in terms of individuals, i.e. we
are interested in forecasting ‘who ends up in which cul-
tural domain’. It should be noted that the social content
is one of those properties that, just like the values of the
final cultural vectors, is maximally unpredictable when
considering the usual annealed model under uniformly
random initial conditions. By contrast, we consider the
quenched scenario starting from specific initial conditions
sampled from empirical, shuffled, random, and an addi-
tional, ‘ultrametric’ class of initial conditions.

We find that, remarkably, empirical and random ini-
tial conditions are associated with the highest and, re-
spectively, lowest degree of predictability, which we rig-
orously define in an information-theoretic sense. This
means that, as compared with the usual uniform spec-
ification of the initial conditions of the model, empiri-
cal data allow for a much more reliable forecast of the
identity of the individuals forming the final cultural do-
mains. We find that this result follows from the fact that
the hierarchical, ultrametric-like organization of empiri-
cal cultural vectors, when coupled with bounded confi-
dence, largely confines cultural convergence within the
lower levels of the hierarchy. This result is confirmed
using surrogate data that, while retaining only the ul-
trametric representation of real data, are also found to
be associated with a higher predictability with respect to
the shuffled and random conditions. The predictability
associated to random and randomized cultural vectors is
lower because it is difficult to identify a meaningful and
robust hierarchical structure within the lower levels of
which social influence remains confined.

Even if we do not perform an explicit analysis of the
cultural content of the final domains, the finding that
their social content is predictable, coupled with the fact
that the initial cultural vectors of all individuals are
known, implies that each final cultural vector will be a
mixture of the traits of the initial vectors of the individ-
uals ending up in the same cultural domain. This means
that, the higher the predictability of the social content,
the higher that of the cultural content as well. The take-
home message is that the empirical hierarchical organi-
zation of culture and its ultrametric representation are
very informative and useful for forecasting the outcome
of models of cultural dynamics.

II. ULTRAMETRICITY AND CULTURAL
DYNAMICS

The notion of ultrametricity refers to sets of ob-
jects that are hierarchically organized in certain ab-
stract spaces, with applications in various fields, includ-
ing mathematics (p-adic numbers), evolutionary biology
(phylogenetic trees) and statistical physics (spin glasses)
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FIG. 1. Cultural dynamics with an ultrametric initial state.
At the top, a dendrogram with three leaves is shown, with
a distance (or dissimilarity) scale on the left, with an as-
sociated similarity scale on the right and a threshold of
ω = 0.625 applied with respect to the former. The dendro-
gram is a subdominant ultrametric representation of distances
between three cultural vectors, which are illustrated below
its branches. These vectors are defined in terms of four bi-
nary variables (features), corresponding to the four horizontal
rows of disks, whose possible values (traits) are denoted by
the light-gray and dark-gray colors. The boxes separate the
two clusters (and connected components) obtained by apply-
ing the ω = 0.625 cut in the dendrogram. Together, the
three vectors make up an initial cultural state on which the
cultural dynamics model can be applied. For a bounded con-
fidence value is set to ω = 0.625, one of the possible final
states is shown at the bottom, with the boxes separating the
two cultural domains.

[18]. In practice, an ultrametric representation can be
produced as the output of a hierarchical clustering al-
gorithm applied to a matrix of pairwise distances be-
tween objects [18]. For the purpose of this work, these
objects are the cultural vectors, and the pairwise cul-
tural distances are computed in the same manner as in
Refs. [14–17] – the following explanations concerning
ultrametricity are mostly restricted to cultural vectors,
although many of the concepts have a wide range of ap-
plicability. The ultrametric representation of N cultural
vectors can be visualized as a dendrogram (a binary hier-
archical tree; see the top of Fig. 1) with N leaves (one for
each vector) and N − 1 branching points (often referred
to as “branchings”, for simplicity), sorted by N − 1 real
numbers that are attached to them. These numbers can

be defined in two, equivalent ways: on a distance scale
(top-left axis) or on a similarity scale (top-right axis) –
both quantities take values between 0.0 and 1.0, while
adding up to 1.0. Each number is an approximation for
distances between leaves that are first merged at the re-
spective branching point. These N − 1 numbers and the
the topology of the dendrogram retain part of the infor-
mation inherent in the cultural distance matrix (which is
specified by N(N − 1)/2 numbers), so the dendrogram is
an approximation of this matrix. The approximation is
exact and algorithm-independent only when the original
distances are perfectly ultrametric: a stronger version of
the triangle inequality is satisfied for all triplets of dis-
tinct objects [18]. A cut can be performed at a certain
height ω in the dendrogram, providing an ω-dependent
partition of the N cultural vectors (see Fig. 1). For
a dendrogram obtained via the single-linkage hierarchi-
cal clustering algorithm (See Ref. [19] and references
therein), the ω-dependent partition is the same as that
encoding the connected components obtained by apply-
ing an ω-threshold to the initial matrix of distances.

Ref. [14] pointed out that a dendrogram approximat-
ing an empirical cultural state shows a clearer hierar-
chical organization than those approximating its shuffled
or random counterparts, suggesting that the ultrametric
representation is better suited for empirical data than
for shuffled or random data. In addition, cultural dy-
namics applied to the empirical cultural state appeared
to mostly induce convergence within the clusters of the
ω-dependent partition, if ω is equal to the bounded con-
fidence threshold used in the cultural dynamics model
(see below), These observations were made in a quali-
tative way, by visually inspecting dendrograms obtained
with the average-linkage hierarchical clustering algorithm
[20, 21]. Instead, we perform here a systematic, quantita-
tive comparison between ω-dependent partitions of initial
cultural states and associated partitions of final states re-
sulting from cultural dynamics, for different classes of ini-
tial cultural states. In addition, one of these classes is de-
fined by enforcing, on average, the ultrametric represen-
tation of empirical data, generalizing a method originally
proposed in Ref. [22] for biological taxonomies. When-
ever an ultrametric representation is constructed within
this study, the single-linkage algorithm [19] is used in-
stead of the average-linkage one, since it provides the sub-
dominant ultrametric, which is the ‘closest from below’
to the original distances and unique [23], while also be-
ing equivalent to the hierarchical connected-component
representation, as mentioned above. This choice is also
common for the purpose of evaluating measures of ul-
trametricity, like the cophenetic correlation coefficient,
which is done in Ref. [15].

Cultural dynamics is modeled here by a simple,
Axelrod-type model, without any underlying geometry
for a social network or a geographical-physical space:
essentially, all N agents are connected to each other.
Instead, a bounded-confidence threshold ω is present,
controlling the maximum cultural distance for which so-
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FIG. 2. Relationships between the important diversity and coordination measures. One sees the dependence of the final,
average diversity 〈DF 〉, first (a) on the initial coordination CI , second (b) on the initial diversity measure DI . This is shown
for one empirical (red), one ultrametric-generated (green), one shuffled (blue) and one random (black) set of cultural vectors.
All sets of cultural vectors have N = 500 elements and are defined with respect to the same cultural space, from the variables
of the empirical Eurobarometer (EBM) data. The errors of 〈DF 〉 are standard mean errors obtained from 10 cultural dynamics
runs.

cial influence can successfully occur. This is exactly the
model used in Refs. [14, 16, 17] and partly in Ref. [15].
As anticipated in Sec. I, this model converges to a ran-
dom final, absorbing state, one that consists of domains
of internally identical and mutually non-interacting cul-
tural vectors – distances within such groups are zero,
while distances across are larger or equal to ω.

Fig. 1 captures the essence of this study. At the center,
the figure shows an initial cultural state with 3 vectors,
defined in terms of 4 binary features, with possible traits
(values) denoted by the two shades of gray. Each of the
three vectors is matched to a branch of the dendrogram
drawn at the top, which encodes the subdominant ultra-
metric representation of the initial cultural state. For
this specific case, the distance between the first two vec-
tors is 0.5, while the distances between any of these two
and the third are 0.75, which together make up a per-
fectly ultrametric discrete space, thus exactly matching
the distances encoded by the dendrogram. The horizon-
tal line denotes a possible ω-cut that can be applied to
the dendrogram, which induces a splitting into two (in
the example shown) branches and two associated subsets
of vectors, which together form a ω-dependent partition
(or clustering) of the initial set. This partition is the
same as that induced by the set of connected cultural
components of the ω-thresholded cultural graph. At the
bottom, the figure shows one possible final state result-
ing from the cultural dynamics process, for a bounded
confidence threshold set to the same ω value as the den-
drogram cut. The groups of identical vectors constitute
another, ω-dependent partition characterizing the cul-
tural state, which exactly matches, in this case, the initial

state partition. Other final configurations are possible,
due to the stochastic nature of cultural dynamics. It
is even possible, although unlikely, that by a succession
of convenient interactions the second vector “migrates”
from the cluster on the left to the one on the right dur-
ing the dynamics. The abundance of such deviations is
quantitatively studied below, for several classes of initial
conditions.

III. PARTITION-SPECIFIC QUANTITIES

The initial and final partitions form the basis of all cal-
culations performed in this study. Each type of partition
is characterized by two types of quantities, denoted by
(DI , CI) for initial partitions and by (DF , CF ) for final
partitions. These quantities are referred to as the coor-
dination (CI and CF ) and the diversity measures (DI

and DF ). They are computed according to the following
formulas:

Da(ω) =
Na
C(ω)

N
, Ca(ω) =

√√√√∑
A

(
SaA
N

)2

ω

, (1)

where a ∈ {I, F} distinguishes between “initial” and “fi-
nal”, Na

C is the number of clusters (connected compo-
nents if a = I, groups of identical vectors if a = F),
and SaA is the size of cluster A for the given ω value.
Note that Da is a measure of diversification, while Ca
is a measure of non-homogeneity encoded by the respec-
tive partition. Moreover, since cultural dynamics is a
stochastic process, it is meaningful to talk about aver-
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ages over final state partitions (over multiple dynamical
runs), which is particularly useful for the final diversity
measure 〈DF (ω)〉.

The 〈DF (ω)〉 quantity has been interpreted as a mea-
sure of propensity to long-term cultural diversity, while
the CI(ω) has been interpreted as a measure of propen-
sity to short-term collective behavior [14, 16]. Through
their common dependence on ω, the correspondence be-
tween the two quantities is graphically illustrated in Fig.
2(a). Along each curve, different points correspond to
different ω values, while different curves correspond to
different classes of initial conditions. It is clear that the
empirical cultural state allows for much more compati-
bility between the aspects measured by the two quanti-
ties than the shuffled and the random cultural state, as
pointed out in Ref. [14]. In fact, this is the analysis used
in Ref. [14] to highlight the structure of empirical cul-
tural data and in Ref. [16] to emphasize the universality
of this structure – except for the “ultrametric” scenario,
which is first introduced here. In this scenario, a set of N
cultural vectors is generated such that, on average, the
pairwise distances reproduce those encoded in the sub-
dominant ultrametric representation of an empirical set
of cultural vectors of the same N . This is achieved us-
ing an extension of the method developed in Ref. [22],
in the context of genetic sequences. The extension here
allows the method to work with combinations of features
of different ranges and types, where the range stands for
the number of traits and the type indicates whether the
feature is ordinal or nominal. This is described in detail
in Appendix A. On the other hand, a shuffled set of cul-
tural vectors is obtained by randomly and independently
permuting empirical cultural traits among vectors, with
respect to every feature, thus exactly enforcing the em-
pirical trait frequencies. Note that the ultrametric cul-
tural state comes closer to the empirical behavior than
the shuffled cultural state, suggesting that empirical ul-
trametric is better than empirical trait frequencies at ex-
plaining the generic empirical structure. Finally, a ran-
dom set of cultural vectors is obtained by drawing each
trait at random, from a uniform probability distribution,
while only retaining the empirical data format, or cul-
tural space – the number of features, together with the
range and type of each feature, thus the. Eurobarometer
38.1 [24] data is used here, formatted according to the
procedure in Ref. [16]

For the same four sets of cultural vectors used in
Fig. 2(a), the average final diversity 〈DF (ω)〉 is plot-
ted against the initial diversity DI(ω) in Fig. 2(b). This
visualization, previously used [14, 15] without the ultra-
metric scenario, illustrates the extent to which cultural
dynamics preserves the number of clusters when going
from the initial to the final partition. As observed be-
fore, the number of clusters is well preserved by cultural
dynamics acting on empirical data, which happens much
less for shuffled data and even less for random data. This
goes along with the idea that the final partition can be
predicted from the initial partition if empirical data is

used for specifying the latter. Note that, like in Fig. 2(a),
ultrametric-generated data lies in between the empirical
and shuffled scenarios, confirming that the subdominant
ultrametric information, which is directly related to the
sequence of ω-dependent initial partitions, is rather ro-
bust with respect to cultural dynamics.

IV. PREDICTABILITY OF THE FINAL STATE

Although informative, the comparison between the
〈DF (ω)〉 and DI(ω) is incomplete as a way of assessing
the predictability of the final partition from the initial
partition: two partitions might have the same number
of clusters, but the sizes and/or contents of these clus-
ters might be very different. In order to take all this
into account in a consistent way, the discrepancy be-
tween the initial and final state partitions is evaluated
using the variation of information measure VI [25], as
a function ofω. This is an information-theoretic mea-
sure that acts as a metric distance within the space of
possible partitions of a set of N elements. It is conve-
nient to work with the normalized version of this quantity
nVI(ω) = VI(ω)/ log(N), which retains the meaning and
metricity of the original quantity, as long as N remains
the same (N = 500 for all results presented here).

The dependence of 〈nVI〉 on ω is shown in the sec-
ond panel of Fig. 3, for the same 4 cultural states used
in Fig. 2, where the averaging is performed over mul-
tiple dynamical runs, like for the 〈DF 〉 quantity. The
empirical state shows the lowest maximal 〈nVI〉 value,
followed by the ultrametric, the shuffled and the random
states. This figure shows, in a rigorous way, that the
outcome of cultural dynamics can be predicted relatively
well based on the initial state, if this is constructed from
empirical data and comparably well if this is constructed
based on the empirical ultrametric information. On the
other hand, shuffled and random data exhibit lower pre-
dictability. Note that, for either scenario, 〈nVI〉 vanishes
for the low-ω and the high-ω regions, which is where both
the initial and final partitions consist of N single-object
clusters and of one, N -objects cluster respectively. This
can be understood by looking at the dependence of the
DI and 〈DF 〉 quantities on ω shown in the in the third
and fourth panels: the ω region for which 〈nVI〉 is signif-
icantly larger than 0.0 is roughly the region where either
DI or 〈DF 〉 is substantially different from 1.0 and 0.0.

In parallel, the first panel of Fig. 3 shows the ω-
dependence of the fraction of initially active cultural links
Φ: the fraction of pairs (i, j) of cultural vectors whose dis-
tance dij < ω in the initial state. This shows that the ω
interval that is non-trivial with respect to DI , 〈DF 〉 and
〈nVI〉 seems to be largely determined by the shape of Φ,
which is nothing else than the cumulative distribution
of intervector distances. The properties of this distribu-
tion – average lower for empirical data than for random
data, standard deviation higher for empirical data than
for either shuffled or random data – have been studied
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FIG. 3. Visualization of the ultrametric predictability of cul-
tural dynamics. The dependence on the bounded-confidence
threshold ω is shown for several quantities: most importantly,
the normalized variation of information between the initial
and final partitions 〈nVI〉 at the center-top; the fraction of
initially active cultural links Φ at the top; the initial diversity
DI at the center-bottom; the final, average diversity 〈DF 〉
at the bottom. This is shown for one empirical (red), one
ultrametric-generated (green), one shuffled (blue) and one
random (black) set of cultural vectors. All sets of cultural vec-
tors have N = 500 elements and are defined with respect to
the same cultural space, from the variables of the Eurobarom-
eter (EBM) data. The errors of 〈DF 〉 and 〈nVI〉 are standard
mean errors obtained from 10 cultural dynamics runs.

before [14, 15] and are recognizable in the first panel of
Fig. 3. Note that, for the ultrametric scenario, the in-
teresting ω region and the Φ profile are compressed in a
lower-ω region compared to empirical data. This means
that the branchings in the dendrogram obtained from
ultrametric-generated data occur at lower ω values than
those in the dendrogram obtained from the original, em-
pirical data. In turn, this is due to the distances between
the ultrametric-generated cultural vectors reproducing,
on average, the subdominant ultrametric empirical dis-
tances, rather than the original empirical distances, while
the former are known to systematically underestimate
the latter, particularly for higher distance values, as long
as the empirical vectors are not perfectly ultrametric,
which in practice is always the case.

There is another aspect that can be noted when com-
paring, for either scenario, the shape of Φ(ω) in the first
panel with the shape of DI(ω) in the third panel of Fig.
3: as ω is decreased, most of the cultural links need to
be eliminated in order to reach the abrupt region of the
DI(ω) transition, for which the number of clusters in the
initial partition becomes comparable to N . This is not
surprising on general grounds. For instance, the Erdős-
Réniy model of random graphs [26] exhibits a critical link
density of 1/N , at which a giant connected component
is present, if N is the number of nodes in the graph, in-
stead of the number of cultural vectors. Still, this analogy
should not be taken too far. The random graph interpre-
tation is closest to the random cultural state scenario
used here, since the expected pairwise distance entailed
by the latter is the same for any pair of cultural vectors,
just like the connection probability entailed by the for-
mer is the same for any pair of nodes. However, even
the random scenario has a the metric structure, due to
how cultural spaces are defined[16], which should intro-
duce more triangles than expected otherwise, while the
shuffled and empirical scenarios are additionally affected
by inhomogeneities in their cultural space distributions.

The analysis presented in Figs. 2 and Fig. 3 was re-
peated for three other datasets: the General Social Sur-
vey [27], Jester[28] and the Religious Landscape [29], pro-
cessed according to the formatting rules of Ref. [16]. For
all four datasets, the results are presented in a joint, com-
pact manner by means of Fig. 4, while more detailed re-
sults are shown in Appendix B. Each of the points in the
figure corresponds to a combination of one dataset and
one scenario. The vertical axis corresponds to a mea-
sure of compatibility between long-term cultural diversity
〈DF 〉 and short-term collective behavior CI , namely a
measure of the overall departure of the 〈DF 〉 vs CI curve
from the lower-left corner in Fig. 2(a). The horizon-
tal axis corresponds to a measure of predictability of the
final state from the initial state, namely an inverse mea-
sure of the overall departure of the 〈nVI〉 vs ω from the
horizontal axis in the second panel of Fig. 3.

For both measures, simple definitions are employed:
rather than integrating information from every ω value
for which some departure is present, both definitions con-
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FIG. 4. Relationship between compatibility of final diversity
and initial coordination (vertical axis) and predictability of
the final partition from the initial partition. Each point corre-
sponds to one cultural state, belonging to one class and to one
empirical source: each color corresponds to one class of cul-
tural states, while marker type correspond to one dataset, as
indicated in the legends. All cultural state consist of N = 500
cultural vectors.

ceptually rely only on one, representative ω∗ point, for
which both departures are relatively high. Specifically,
ω∗ is defined by intersecting the 〈DF 〉 vs CI curve with
the main diagonal 〈DF 〉 = CI . In practice, since just
a finite number of ω values are available for any com-
bination of dataset and scenario, one uses instead the
two ω values that are closest to the main diagonal of the
〈DF 〉 vs CI plot from either of the two sides. These two
values, labeled as ωL and ωR, “bracket” ω∗ from the left
and right respectively: ωL < ω∗ < ωR. The ω∗ itself is
never explicitly calculated, but is conceptually useful for
the explanations below.

The compatibility approximates the distance between
the (〈DF (ω∗)〉 vs CI(ω

∗)) point and the (〈DF 〉 = 0, CI =
0) point, normalized by the length of the main diagonal
of the 〈DF 〉 vs CI plot. In practice, this is evaluated in
terms of ωL and ωR according to:√

〈DF (ωL)〉2 + C2
I (ωL) +

√
〈DF (ωR)〉2 + C2

I (ωR)

2
√

2
,

while the associated error is evaluated as:√
〈DF (ωL)〉2 + C2

I (ωL)−
√
〈DF (ωR)〉2 + C2

I (ωR)

2
√

2
.

The predictability approximates the distance between
the (ω∗, 〈nVI(ω∗)〉) point and the 〈nVI〉 = 1 line. In
practice, this is evaluated as:

1− 〈nVI(ωL)〉+ 〈nVI(ωR)〉
2

,

while the associated error is evaluated as:

|〈nVI(ωL)〉 − 〈nVI(ωR)〉|
2

.

Note that compatibility increases with predictability in
a roughly linear way, at least for the cultural states con-
sidered here. Moreover, cultural states belonging to the
same class tend to cluster together in the compatibility-
predictability space. A notable exception is ultrametric-
Jester, which is significantly outside the ultrametric class
in terms of predictability, showing higher predictability
than any of the empirical states. Still, it is clear that cul-
tural states that are closer to the universal 〈DF 〉 vs CI
empirical behavior also allow for better estimates of the
final partition from the initial one.

The observed increase of compatibility with pre-
dictability provides some insights about the nature of em-
pirical data, or at least about the shape of an empirical-
like dendrogram characteristic for the upper-right corner
of Fig. 4. This can be understood by realizing that
the ultrametric and empirical states approach an ideal,
limiting situation of perfect predictability, for which the
initial and final partitions are identical irrespective of ω.
This implies that 〈DF (ω)〉 = DI(ω) and consequently
that the 〈DF 〉 vs CI curve is essentially the DI vs CI
curve and thus controlled by the geometry of the sub-
dominant ultrametric dendrogram. One can then show
– see Appendix Sec. C – that this geometry needs to
be highly “unbalanced” in order to explain the close-to-
linear 〈DF 〉 ≈ 1−CI empirical behavior in Fig. 2(a) and
the compatibility values of approximately 0.5 following
from it. For a perfectly-unbalanced geometry, the kth
highest dendrogram branching separates only one leaf
from the remaining N − k, for all k ∈ {1, ..., N − 1}. By
contrast, a perfectly-balanced geometry entails a split-
ting into two, equal clusters for each dendrogram branch-
ing, which would induce an inverse square 〈DF 〉 ∝ C−2I
behavior – see Appendix Sec. C – closer to that of shuf-
fled and random cultural states, with a lower compatibil-
ity value. Thus, while going from the random to the em-
pirical class, by enforcing more and better empirical in-
formation, the increasing level of compatibility becomes
more suggestive of an unbalanced dendrogram geometry,
while the increasing level of predictability increases the
reliability of this geometric interpretation.

V. CONCLUSION

This study focused on the ultrametric representation
of sets of cultural vectors used for specifying the ini-
tial state of cultural dynamics models. On one hand,
it introduced another procedure for randomly generating
initial conditions based on the subdominant ultramet-
ric information of empirical data. On the other hand,
it examined the extent to which the subdominant ul-
trametric representation can be used for predicting the
final state of cultural dynamics in a simple theoreti-
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cal setting. The bounded-confidence threshold param-
eterising the dynamical model was used to extract an
initial-state partition from the ultrametric representa-
tion. This was sistematically compared, in terms of vari-
ation if information, with the corresponding final state
partition consisting of groups of identical cultural vec-
tors. The comparison showed that the predictive power
of the ultrametric is relatively high for empirical cul-
tural states, which are closely followed by ultrametric-
generated states, which are followed by the shuffled and
then by the random states. Moreover, higher predictabil-
ity appears to go hand in hand with higher compatibility
between a propensity to long-term cultural diversity and
a propensity to short-term collective behaviour, which
was previously shown to be a hallmark of empirical struc-
ture. This means that ultrametric information is better
than trait-frequency information at explaining this struc-

ture. These results further advance the understanding of
the relationship between ultrametricity and cultural dy-
namics. Moreover, it is tempting to speculate that, for
the purpose of forecasting the dynamics of culture in the
real world, knowledge about the current distribution of
individuals in cultural space might be sufficient, with lit-
tle or no need for running simulations, at least if one
assumes that consensus-favoring social influence is the
essential driving force of this dynamics.
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Maxi San Miguel. Global culture: A noise-induced tran-
sition in finite systems. Phys. Rev. E, 67:045101, Apr
2003.

[5] Konstantin Klemm, Vı́ctor M. Egúıluz, Raúl Toral, and
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Appendix A: Ultrametric-generation method

This section explains the method for generating sets of
cultural vectors belonging to the “ultrametric” class. The
method is an extension of that developed in Ref. [22].
The description here is somewhat similar to that in Ref.
[22], but the nomenclature specific to cultural vectors is
used, instead of that specific to genetic sequences.

The method takes as input a dendrogram, as well as
a target cultural space – the number of cultural features
F , together with the range (number of traits) q and type
(nominal or ordinal) of each feature. This information
is taken from empirical data and the single-linkage hier-
archical clustering alorithm is employed for construct-
ing the dendrogram whenever the method is used in
this study. Upon every use, the method generates, in
a stochastic way, a set of N cultural vectors associated
to the N leaves of the dendrogram, such that, on average,
the pairwise similarities between cultural vectors match
the similarities encoded by the dendrogram.

More precisely, for each cultural feature in the target
space, the method enforces:

E[sqij ] = ραij , (A1)

where E[...] stands for “expectation value”, αij is the
lowest branching in the dendrogram joining leaves i and
j, ραij

is the similarity encoded by this branching and
sqij is the partial contribution to the similarity between
cultural vectors i and j of a feature of range q, which is
computed according to the following formula:

sqij =

{
δ(xki , x

k
j ) if nominal,

|xk
i−x

k
j |

qk−1 if ordinal,
(A2)

which depends on whether the feature is nominal or or-
dinal. Eq. (A2) is consistent with the cultural dis-
tance definition in Refs. [14–17] (as mentined above:
similarity = 1.0− distance).

In Eq. (A1), the expectation E[...] implies averaging
over multiple runs of the method, for the same dendro-

gram and the same cultural feature. Although in prac-
tice the method is used only once (and independently) for
each feature, the fact that a large number F of features
are present makes this approach sensible: the expectation
E[sij ] of the complete similarity sij will also match ραij

(since the complete similarity is the arithmetic average
of the feature-level similarities), while the fluctuations of
sij around ραij with F . In other words, as pointed out
in Ref. [22], the expectation in Eq. (A1) can be inter-
preted in two idealized ways: averaging over infinitely
many runs or averaging over infinitely many features.

In order to enforce Eq. (A1) for every pair (i, j), the
method controls for the extent to which the traits of dif-
ferent vectors are choosen independently of each other.
For every feature, all the N choosen cultural traits origi-
nate in independent random draws from a uniform prob-
ability distribution, but the number of draws is smaller
or equal to N . Thus, the traits of vectors i and j ei-
ther originate in the same draw, with probability Pij , or
originate in different draws, with probability 1− Pij . In
the former case the two traits are identical, with a well-
determined feature-level similarity sqij = 1. In the latter
case, the two traits may be identical or different, so that
sqij fluctuates around an expectation value f(q). Taking

both cases into account, the expectation value of sqij is:

E[sqij ] = Pij + [1− Pij ]f(q), (A3)

where the expectation for different draws f(q) reads:

f(q) =

{
1
q if nominal,
2q−1
3q if ordinal,

(A4)

which is the expression of the expected, feature-level sim-
ilarity between two traits drawn at random from a uni-
form probability distribution, obtained analytically from
Eq. (A2). The choices of traits and the associated ran-
dom draws are mangaged by the stochastic-algorithmic
part of the method (briefly explained at the end of this
section), which is designed to ensure that:

Pij = ρIαij
(A5)

is satisfied, where ρIαij
is a corrected version of the simi-

larity ραij
implicit in the αij branching:

ρIαij
= ραij

− h(ραij
, q), (A6)

where h is a correction function chosen such that
Eqs. (A1) holds, subject to (A3) and (A5). Specifically,
by combining Eq. (A5) with Eq. (A3) and then with
Eq. (A1), one obtains:

ρIαij
+ [1− ρIαij

]f(q) = ραij
. (A7)

By inserting Eq. (A6) in Eq. (A7) and further manipu-
lations, one obtains the following expression for the cor-
rection function:

h(ρα, q) =
1− ρα

1− f(q)
f(q). (A8)

http://www.icpsr.umich.edu/icpsrweb/ICPSR/studies/06045
http://www.icpsr.umich.edu/icpsrweb/ICPSR/studies/06045
http://gss.norc.org/get-the-data/spss
http://gss.norc.org/get-the-data/spss
http://www.pewforum.org/2008/06/01/


10

Note that Eq. (A5) identifies ρIαij
with a probability,

meaning that ρIα > 0 should be satisfied for all branch-
ings α. This implies, given Eq. (A6) and Eq. (A8), that
ρα > f(q) for all branchings α of the given dendrogram
and for all features in the target space. This condition
needs to be satisfied in order for this method to be valid
and is actually satisfied by all four empirical dendrograms
used in this study. Also note that the method in Ref. [22]
is recovered as a special case of the above, by restricting
to nominal features of constant q via Eq. (A4).

Finally, it is worth describing the stochastic-
algorithmic part of the method. For each of the F fea-
tures in the target space, the following steps are carried
out:

• the dendrogram is recursively explored starting
with the root branching; for every branching α
reached by this exploration, one of the following
two things happens:

– one of the q traits is randomly chosen, ac-
cording to a uniform distribution and assigned
to all cultural vectors corresponding to leaves
under branching α, without further exploring
any branching below α;

– the exploration is continued with each of the
two branches emerging from α, if that branch
leads to another branching, instead of leading
to a leaf;

with probability Qα for the former and probability
1−Qα for the latter, where:

Qα =
ρIα − ρIp(α)
1− ρIp(α)

, (A9)

where p(α) is the parent branching of α, if α is not
the root, while ρIp(α) = 0 if α is the root.

• for each of the leaves whose traits are not assigned
during the above step, one of the q traits is ran-
domly chosen, according to a uniform distribution
and assigned to the respective cultural vector.

This algorithmic procedure ensures that Eq. A5 holds,
for reasons that are fully explained in Ref. [22].

It is worth noting that the ultrametric-generation
method described in this section makes use of all the
information inherent in the geometry of the dendrogram
that it receives as input – both the topology and the sim-
ilarities ρ encoded by the branching points of the dendro-
grams are used. However, the generated sets of cultural
vectors will in general not be precisely ultrametric, in
the strict mathematical sense [18] (unless it is applied in
the limit of F being much larger than N). Still, they are
generated based on the empirical ultrametric information
and are arguably as close as they can be to reproducing
the ultrametric set of pairwise distances.

Appendix B: Detailed results

This section shows the complete results concerning the
ω-dependence of relevant quantities, for the other three
data sets that are used in this study in addition to the
Eurobarometer (EBM [24]): the General Social Survey
(GSS [27]) data in Fig. 5, the Religious Landscape (RL
[29]) data in Fig. 6 and the Jester (JS [28]) data in
Fig. 7. Each of these three figures follows the format
of Fig. 3 above, with four panels and four scenarios.
Although, for each type of scenario, there is a certain
variability in the width and location of the non-trivial
ω interval, the results are qualitatively similar to those
obtained for EBM data, with a notable exception visible
for the analysis of Jester data in Fig. 7: the second panel
shows that the discrepancy between the initial and the
final partition, as measured by 〈nVI〉, is clearly smaller
for the ultrametric cultural state than for the empirical
cultural state, so the overal predictability is higher. This
is in agreement with the observation made in relation to
Fig. 4 about the relatively high predictability value of
the Jester-ultrametric point.

Appendix C: Dendrogram geometry

This section gives some analytical insight on how the
dendrogram geometry is related to the behaviour of the
two measures of initial diversity DI and initial coordina-
tion CI . As functions of ω, the two measures only change
(in steps) when ω crosses the distance value associated
to any of the branchings of the dendrogram. Thus, one
can replace the dependence of DI and CI on ω with a de-
pendence on k, which counts the number of dendrogram
branchings above a given ω, in terms of their associated
distance values – k increases from 0 to N − 1 as ω de-
creases from 1.0 to 0.0. Based on Eq. (1), one can thus
write:

DI(k) =
N I
C(k)

N
, CI(k) =

√√√√∑
A

(
SIA
N

)2

k

. (C1)

There are two, extreme types of dendrogram ge-
ometries that are worth considering, the ”perfectly-
unbalanced geometry” and the ”perfectly-balanced ge-
ometry”. These are illustrated in Fig. 8.

For the perfectly-unbalanced geometry, shown on the
left side of Fig. 8, the number of connected components
is:

N I
C(k) = k + 1, (C2)

while the sizes of the connected component are:

SIA(k) =

{
N − k, ifA = 1

1, ifA ∈ {2, 3, ..., k + 1}
. (C3)
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FIG. 5. Vizualisation of the ultrametric predictability of cul-
tural dynamics. The dependence on the bounded-confidence
threshold ω is shown for several quantities: most importantly,
the normalized variation of information between the initial
and final partitions 〈nVI〉 at the center-top; the fraction of
initially active cultural links Φ at the top; the initial diversity
DI at the center-bottom; the final, average diversity 〈DF 〉
at the bottom. This is shown for one empirical (red), one
ultrametric-generated (green), one shuffled (blue) and one
random (black) set of cultural vectors. All sets of cultural
vectors have N = 500 elements and are defined with respect
to the same cultural space, from the variables of the Gen-
eral Social Survey (GSS) data. The errors of 〈DF 〉 and 〈nVI〉
are standand mean errors obtained from 10 cultural dynamics
runs.
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FIG. 6. Vizualisation of the ultrametric predictability of cul-
tural dynamics. The dependence on the bounded-confidence
threshold ω is shown for several quantities: most importantly,
the normalized variation of information between the initial
and final partitions 〈nVI〉 at the center-top; the fraction of
initially active cultural links Φ at the top; the initial diversity
DI at the center-bottom; the final, average diversity 〈DF 〉
at the bottom. This is shown for one empirical (red), one
ultrametric-generated (green), one shuffled (blue) and one
random (black) set of cultural vectors. All sets of cultural
vectors have N = 500 elements and are defined with respect
to the same cultural space, from the variables of the Religious
Landscape (RL) data. The errors of 〈DF 〉 and 〈nVI〉 are stan-
dand mean errors obtained from 10 cultural dynamics runs.
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FIG. 7. Vizualisation of the ultrametric predictability of cul-
tural dynamics. The dependence on the bounded-confidence
threshold ω is shown for several quantities: most importantly,
the normalized variation of information between the initial
and final partitions 〈nVI〉 at the center-top; the fraction of
initially active cultural links Φ at the top; the initial diversity
DI at the center-bottom; the final, average diversity 〈DF 〉
at the bottom. This is shown for one empirical (red), one
ultrametric-generated (green), one shuffled (blue) and one
random (black) set of cultural vectors. All sets of cultural
vectors have N = 500 elements and are defined with respect
to the same cultural space, from the variables of the Jester
(JS) data. The errors of 〈DF 〉 and 〈nVI〉 are standand mean
errors obtained from 10 cultural dynamics runs.

FIG. 8. Sketch of a “perfectly balanced” (left) dendrogram
geometry and a “perfectly unbalanced” (right) one, for N = 4
leaves. The values of k indicate the number of branchings
above any cut that would be applied to the dendrogram within
the respective horizontal band.

From Eqs. (C1) and (C2), one obtains the behaviour of
the initial diversity measure:

DI(k) =
k + 1

N
, (C4)

while from Eqs. (C1) and (C3) one obtains the behaviour
of the initial coordination measure:

CI(k) =

√(
N − k
N

)2

+ k

(
1

N

)2

, (C5)

from which it follows that:

CI(k) =

√
1− 2

k

N
+
k2

N2
+

k

N2
, (C6)

where one can neglect the k
N2 term in the limit of large

N , thus obtaining:

CI(k) ≈ 1− k

N
. (C7)

From Eqs. C4 and C7 it follows that:

CI(k) ≈ 1−DI(k)− 1

N
, (C8)

which can be rephrased, after neglecting the 1
N term in

the limit of large N , to:

DI(k) ≈ 1− CI(k), (C9)

which describes the second-diagonal empirical behaviour
of Fig. 2(a), under the assumption that DF (k) =
DI(k),∀k.

For a perectly-balanced geometry, shown on the right
side of Fig. 8, the only relevant values of k (those corre-

sponding to non-vanishing ω intervals) are k =
∑l−1
i=0 2i,

with l ∈ {0, 1, 2, ..., log2N}. For these values of k, the
number of connected components, like in the unbalanced
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case, is described by Eqs. (C2), while the sizes of the
connected components are:

SIA(k) = N/(k + 1),∀A ∈ {1, 2, ..., k + 1}, (C10)

from which it follows that the initial coordination mea-
sure is:

CI(k) =

√
(k + 1)

(
1

k + 1

)2

=
1√
k + 1

. (C11)

Since the k-dependence of the initial diversity measure
DI , like in the unbalanced case, is described by Eq. (C4),
it follows that:

DI(k) =
1

NC2
I (k)

, (C12)

which, under the assumption that DF (k) = DI(k),∀k,
entails a curve more similar to that of the shuffled or
random curves of Fig. 2(a), than to that of the empirical
curve. Moreover, this curve comes arbitrarily close to the
lower left corner as N increases.

To sum up, the above reasoning shows that, as long as
DF (ω) = DI(ω),∀ω, an unbalanced dendrogram geome-
try fits the empirical DF (CI) behaviour very well, while
a balanced dendrogram geometry does not. Although
the latter entails a DF ∝ C−2I behaviour quite similar
to that observed for shuffled or random data, one can-
not say that a balanced geometry is a good description
for either of these two cases, since the assumption that
DF = DI is false for both these cases, for the interesting
ω intervals.
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