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In statistical physics, the challenging combinatorial enumeration of the configurations of a system
subject to hard constraints (microcanonical ensemble) is mapped to a mathematically easier calcu-
lation where the constraints are softened (canonical ensemble). However, the mapping is exact only
when the size of the system is infinite and if the property of ensemble equivalence (EE), i.e. the
asymptotic identity of canonical and microcanonical large deviations, holds. For finite systems, or
when EE breaks down, statistical physics is currently believed to provide no answer to the combina-
torial problem. In contrast with this expectation, here we establish exact relationships connecting
conjugate ensembles in full generality, even for finite system size and when EE does not hold. We
also show that in the thermodynamic limit the ensembles are directly related through the matrix of
canonical (co)variances of the constraints, plus a correction term that survives only if this matrix has
an infinite number of finite eigenvalues. These new relationships restore the possibility of enumer-
ating microcanonical configurations via canonical probabilities, thus reconnecting statistical physics
and combinatorics in realms where they were believed to be no longer in mutual correspondence.

For virtually any system consisting of a large number n
of interacting elements, an exact microscopic description
is unfeasible and has to be replaced by a statistical one
involving a probability distribution P (G) over the mi-
crostates G ∈ G of the system consistent with a certain

number K of macroscopic properties ~C∗ = (C∗
1 , . . . , C

∗
K)

that are empirically accessible. Here ~C∗ ≡ ~C(G∗) is
the particular, known value of the K-dimensional vec-

tor ~C(G) of macroscopic constraints, G
∗ ∈ G is the

(unknown) microstate, and G is the set of allowed mi-
crostates. For concreteness, throughout the paper we
assume that G only takes discrete values, so that P (G)
is a probability mass function. The principle of maxi-
mum entropy states that the optimal P (G) is the one
that maximizes the entropy functional

S[P ] ≡ −
∑

G∈G

P (G) lnP (G), (1)

as such maximum-entropy probability is “maximally non-

committal with respect to missing information” [1]. The
resulting theory is statistical physics, which describes
large systems subject to a few macroscopic constraints
such as total energy and total number of particles [2, 3].
The usefulness of statistical physics crucially depends

on whether one is able to calculate P (G) explicitly. Im-
posing hard constraints, i.e. restricting oneself to the

configurations G such that ~C(G) = ~C∗, leads to the so-
called microcanonical maximum-entropy probability

Pmic(G|~C∗) = Ω−1
~C∗
δ~C∗, ~C(G), (2)

where Ω~C∗ is the number of microstates compatible with

the constraint ~C∗.
The calculation of Ω~C∗ requires complicated and often

unknown combinatorial enumeration formulae, a math-

ematical challenge that makes the microcanonical en-
semble generally intractable. A cornerstone of statisti-
cal physics, dating back to Gibbs [3] and known as ‘en-
semble equivalence’ (EE), is the assumption that, in the

thermodynamic limit n → ∞, the hard values ~C∗ of the
constraints can be safely replaced by soft (i.e. suitably
fluctuating) values, since for large systems the fluctua-
tions around the hard values are expected to vanish. The
result is the mathematically tractable canonical ensem-
ble 1 where the constraints are enforced only as expected

values, i.e. 〈~C〉 = ~C∗. The maximization of the entropy
yields in this case [1]

Pcan(G|~θ∗) =
e−

~θ∗·~C(G)

∑

G′∈G
e−~θ∗· ~C(G′)

=
e−H(G,~θ∗)

Z(~θ∗)
, (3)

where ~θ is a K-dimensional vector of Lagrange mul-

tipliers needed to control the expected value 〈~C|~θ〉 ≡
∑

G∈G Pcan(G|~θ)~C(G), H(G, ~θ) ≡ ~θ · ~C(G) =
∑K
k=1 θkCk(G) is (somewhat improperly) called the

‘Hamiltonian’ function (the dot indicating the scalar

product), Z(~θ) =
∑

G∈G
e−

~θ·~C(G) is the partition func-

tion, and ~θ∗ is the specific value such that

〈~C|~θ∗〉 = ~C∗, (4)

1 At this point, since we are considering a generic choice of con-
straints, in principle we need not make a distinction between the
canonical ensemble (where the energy is the traditional soft con-
straint in statistical physics) and the grandcanonical ensemble
(where the number n of particles is an additional soft constraint).
However, since later on we will write expressions that depend on
n, for simplicity we restrict to the canonical ensemble.
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where we have defined the canonical ensemble average of
a generic function X(G) as

〈X |~θ〉 ≡
∑

G∈G

Pcan(G|~θ)X(G). (5)

Equivalently, the value ~θ∗ is the one that maximizes the

log-likelihood function L∗(~θ) ≡ lnPcan(G
∗|~θ) [4, 5] (see

SI).
Note that eq. (4) fixes the relationship between the

dual quantities ~C∗ and ~θ∗. We can therefore simplify the

notation and set P ∗
mic(G) ≡ Pmic(G|~C∗) and P ∗

can(G) ≡

Pcan(G|~θ∗), the asterisk indicating that both probabili-

ties are ultimately specified by the unique value ~C∗. Sim-
ilarly, after inserting eqs. (2) and (3) into eq. (1), we can
denote the resulting entropies of the two ensembles as

S∗
mic ≡ S[P ∗

mic] = lnΩ~C∗ (6)

S∗
can ≡ S[P ∗

can] = −
∑

G∈G

Pcan(G|~θ∗) lnPcan(G|~θ∗). (7)

An important equality, proven in SI and crucial for our
later results, is the one between the canonical entropy

and minus the maximized log-likelihood L∗(~θ∗):

S∗
can = − lnPcan(G

∗|~θ∗) = −L∗(~θ∗). (8)

Throughout the paper, we assume that in the thermody-

namic limit ~θ∗ is not a critical point of a phase transition,
i.e. it is in the interior of a thermodynamic phase.
Obviously, for finite n the microcanonical and canon-

ical ensembles are necessarily different. A mathematical
formalization of this difference is discussed later. An in-
formal example is the different physical interpretation of
the two ensembles, the microcanonical one being viewed
as a model for systems in energetic isolation (if the con-
straint is the total energy) and the canonical one as a
model for systems in thermal equilibrium with a heat
bath (if the Lagrange multiplier is the inverse tempera-
ture). So it only makes sense to talk about EE in the
thermodynamic limit, if relative energy fluctuations van-
ish. This already implies that the combinatorial problem
cannot be solved via statistical physics when n is finite.
In the thermodynamic limit, provided EE holds, the

generally unfeasible calculations in the microcanonical
ensemble can be replaced by easier calculations in the
canonical ensemble. For instance, most textbooks treat
the microcanonical ensemble by relying on the approx-
imation Ω~C∗ ≈ eS

∗
can = 1/P ∗

can(G
∗) where the symbol

“≈” means “equal up to a factor assumed to be subex-
ponential in n” and the last equality follows from eq. (8).
To make a concrete example, for systems with given total
energy E∗ one often assumes ΩE∗ ≈ e+βE

∗

Z(β) where
β = (kBT )

−1 is the inverse temperature, kB is Boltz-
mann’s constant and T is the temperature. Stated more
rigorously, this assumption is

Ω~C∗ = eS
∗
can−o(n) =

e−o(n)

P ∗
can(G

∗)
(9)

(where o(n) denotes a quantity that, if divided by n,
vanishes as n diverges) or equivalently

lim
n→∞

lnΩ~C∗

n
= − lim

n→∞

lnP ∗
can(G

∗)

n
= lim
n→∞

S∗
can

n
. (10)

Therefore, in presence of EE, the enumeration problem
required to calculate the ‘hard’ microcanonical quantity
Ω~C∗ can be mapped exactly, in the thermodynamic limit,
to a ‘softened’ canonical problem requiring only the cal-
culation of P ∗

can(G
∗) or S∗

can. This establishes a tight
connection between statistical physics and combinatorics.
An equivalent condition is

P ∗
mic(G

∗) = Ω−1
~C∗

= eo(n)−S
∗
can = P ∗

can(G
∗)eo(n), (11)

or ultimately

lim
n→∞

1

n
ln
P ∗
mic(G

∗)

P ∗
can(G

∗)
= 0, (12)

which essentially states that EE corresponds to the iden-
tity of the large deviation properties of the two conjugate
ensembles at rate n, i.e. the two probability measures are
exponentially equivalent at rate n.
When the size n of the system is finite, or when the

assumption of EE as stated by eq. (12) is violated, the
two ensembles are different and the enumeration prob-
lem cannot be directly solved via a canonical calculation.
Indeed, while most statistical physics textbooks still con-
vey the idea that EE is expected to hold in very general
circumstances, several examples of the breakdown of EE
in a diverse range of systems have actually been provided
over the last decades [6–13]. A recently investigated class
of such systems is random networks with topological con-
straints [14–21], to which we will briefly refer later in this
paper. For systems with nonequivalent ensembles, it has
been shown that microcanonical and canonical calcula-
tions of various properties no longer agree. Therefore, for
these systems, the connection between statistical physics
and combinatorics appears essentially lost, just like for
systems with finite size.
At this point, an open problem of practical relevance

emerges. Even accepting that the useful mapping to the
canonical ensemble is only justified in the regime of EE,
how to rigorously determine whether EE holds, without
having to calculate the microcanonical ensemble? In fact,
if EE can only be verified after having calculated both

canonical and microcanonical properties and compared
them, then the practical usefulness of the canonical en-
semble evaporates, because one will have to trust the lat-
ter only when the microcanonical one is also tractable.
A second open problem, related to the previous one but

of more fundamental theoretical importance and general-
ity, should also be highlighted. Is it possible, in absence
of EE and/or when the size of the system is finite, to
restore some (possibly modified) rigorous mathematical
correspondence between the canonical and microcanoni-
cal ensembles, so that the intractability of the latter can
still be circumvented by performing feasible calculations
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in the former? In other words, is there a general and
stronger mathematical relationship connecting conjugate
statistical ensembles, irrespective of whether EE holds
and possibly for finite system size?

We now provide definite solutions to these two prob-
lems. One of our main results, proven in SI, is the follow-
ing exact formula, which is valid in general and reduces
the calculation of Ω~C∗ to purely canonical quantities:

Ω~C∗ =P
−1
mic(G

∗|~C∗) =

∫ +~π

−~π

d~ψ

(2π)K
P−1
can(G

∗|~θ∗+i ~ψ) (13)

where ~π ≡ (π, . . . , π) is theK-dimensional vector with all

components equal to π and the argument ~θ of Pcan(G
∗|~θ)

has been extended to complex values. The above equa-
tion establishes a seemingly esoteric, but exact relation-
ship connecting the canonical and microcanonical proba-
bilities. When the integral in eq. (13) can be carried out
explicitly, the microcanonical ensemble can be calculated
exactly from an extension of the canonical ensemble to
the complex domain. Remarkably, the formula is valid
even for finite n and even when EE breaks down, thus
extending the usefulness of the canonical ensemble sig-
nificantly and unveiling a tighter and more general con-
nection between ‘hard’ combinatorial enumeration and
‘soft’ statistical physics.

Due to the importance of the above result, we may
wonder whether eq. (13), which in principle needs to be
evaluated case by case and is therefore not very transpar-
ent, takes some more explicit and general form, indepen-
dently of the model specification. As we show in SI, this
is indeed possible. Before showing the result, we need

some precautions. Note that, for certain choices of ~θ∗ or
~C∗, some of the K components of ~C∗ may be dependent
on the other ones (see SI for details). In such a case,

there is only an effective number K̃ ≤ K of independent

constraints. Upon ordering the entries of ~C in such a
way that the first K̃ ones are independent, we define the
reduced K̃×K̃ matrix Σ̃

∗ of the canonical (co)variances,

evaluated at ~θ∗, of the K̃ independent constraints. The
entries of Σ̃∗ are

Σ̃∗
k,l = Cov[Ck, Cl]~θ∗ k, l = 1, . . . , K̃ (14)

and its eigenvalues, which are all strictly positive, are de-

noted as {λ∗k}
K̃
k=1. The strict positivity of these eigenval-

ues is a consequence of the semi-positive definiteness of
covariance matrices, together with the fact that all the K̃
rows of Σ̃∗ are independent, as follows from the indepen-
dence of the corresponding K̃ constraints. Armed with
the above notation, we can carry out a saddle-point [22]
calculation (see SI) to obtain the following asymptotic
expansion for Ω~C∗ :

Ω~C∗ =
eS

∗
canT ∗

√

det(2πΣ̃∗)
(15)

where

T ∗ ≡

K̃
∏

k=1

[1 +O (1/λ∗k)] . (16)

Equation (15) makes the leading term of eq.(13) mani-
fest and renders the connection between the hard enu-
meration problem and its softened dual more explicit. In
particular, upon comparison with eq.(9), it shows that
an important role is played not only by the canonical en-
tropy S∗

can, but also by the canonical covariances Σ̃∗. We
will discuss the asymptotic behaviour of T ∗ later. For the
moment, we note that if no n-dependence is assumed in
the problem, i.e. question is counting how many config-

urations are compatible with a fixed constraint ~C∗ for a
given finite value of n, then eqs. (15) and (16) already
provide the corresponding answer. However, the usual
problem in combinatorics is that of assuming a certain
n-dependence of the configuration space and of the en-
forced constraint. In this case, the counting question
needs an asymptotic answer for large n. This is precisely
what we are going to investigate at the end, when moving
to the thermodynamic limit.
We now show how the above results relate to the prop-

erty of ensemble (non)equivalence and how they can be
exploited to generalize eqs.(9), (10), (11) and (12) to the
case of finite system sizes and/or nonequivalent ensem-
bles. We start from the definition of the relative entropy
(or Kullback-Leibler divergence) between the canonical
and microcanonical probabilities [20, 23]:

∆∗ ≡ S[P ∗
mic||P

∗
can] =

∑

G

P ∗
mic(G) ln

P ∗
mic(G)

P ∗
can(G)

. (17)

The relative entropy rigorously quantifies the addi-
tional uncertainty contained in P ∗

can(G) as compared to
P ∗
mic(G). This additional uncertainty is due to the fluctu-

ating nature of the constraints in the canonical ensemble.
An important result, proven in ref. [20], is that ∆∗ is only
determined by the local values P ∗

can(G
∗) and P ∗

mic(G
∗)

achieved by any of the configurations G∗ that realize the

sharp value ~C∗ of the constraints:

∆∗ = ln
P ∗
mic(G

∗)

P ∗
can(G

∗)
= ln

1

Ω~C∗P ∗
can(G

∗)
. (18)

For finite n, P ∗
mic and P ∗

can are different and ∆∗ > 0,
in line with our previous discussion of the distinction be-
tween thermal equilibrium and energetic isolation. How-
ever, we can now quantify ∆∗ exactly by inserting eq.(13)
into eq.(18):

∆∗ = − ln

∫ +~π

−~π

d~ψ

(2π)K
Pcan(G

∗|~θ∗)

Pcan(G∗|~θ∗+ i ~ψ)

= − ln

∫ +~π

−~π

d~ψ

(2π)K
〈ei

~ψ·(~C∗
−~C)|~θ∗〉, (19)

where we have used eq. (5) with X(G) = ei
~ψ·[~C∗

−~C(G)]

(see SI for details). Equation (19) is valid in general
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(again, even for finite n and when EE breaks down) and
provides a way to calculate the relative entropy exactly
as a function of only the canonical probability (extended
to the complex domain).
We now consider the thermodynamic limit. Inserting

the asymptotic result (15) into eq. (18) leads to

∆∗ = ln

√

det(2πΣ̃∗)

T ∗
, (20)

where we have used eq. (8). It is now useful to re-
express the above result in terms of a suitable relative
entropy density. Indeed, the definition of EE in the mea-
sure sense [23] is the vanishing of the relative entropy
n-density as n→ ∞, i.e.

lim
n→∞

∆∗

n
= 0. (21)

Using eq. (18), we indeed see that the above condition is
the same as eq. (12). When EE breaks down, i.e. when
the above limit is strictly positive, then eqs. (9), (10), (11)
and (12) no longer hold, and the nexus between com-
binatorics and statistical physics is apparently severed.
However, this turns out not to be the case, because a
nontrivially modified version of all those equations is still
in place, as we now show.
Let us slightly change our perspective and look for an

increasing positive sequence αn such that, irrespective of
whether EE holds, the following limit is finite:

δ∗α∞
≡ lim
n→∞

∆∗

αn
, δ∗α∞

∈ (0,+∞). (22)

We call δ∗α∞
the limiting αn-density of ∆∗. We can then

restate the definition of EE in the measure sense by say-
ing that the ensembles are equivalent iff αn = o(n). We
will return on this point later. An important result, fol-
lowing from eq.(20) and proven in SI, is

δ∗α∞
= lim

n→∞

ln
√

det(2πΣ̃∗)

αn
+ τ∗α∞

. (23)

where

τ∗α∞
= − lim

n→∞

lnT ∗

αn
(24)

is zero, unless there is an infinite (growing at least like

αn) number of eigenvalues of Σ̃∗ that have a finite limit
as n → ∞ (see SI). This key result finally allows us to
discuss the asymptotic behaviour of T ∗ in terms of its
effects on τ∗α∞

.
Whenever the number of constraints is finite, then

τ∗α∞
= 0 irrespective of the value of the eigenvalues of

Σ̃
∗. This applies to most traditional situations in sta-

tistical physics, where there are only a handful of con-
straints including properties like total energy, total num-
ber of particles (possibly of different chemical species),

etc. In the context of network ensembles, this also ap-
plies to e.g. random graphs with a finite number of global
constraints, like total number of links and/or triangles
and/or wedges [14–17].
Also, whenever the canonical fluctuations of all con-

straints grow as the size of the system grows, then
τ∗α∞

= 0 irrespective of the number of constraints. Note
that this is also a very natural situation, since the con-
straints are typically chosen to be extensive quantities
whose mean and variance grows with n. Besides the
traditional examples mentioned above, this includes sys-
tems with local (i.e. particle-specific) constraints, such
as dense random graphs with given degrees, for which
αn = n lnn, K = K̃ = n, and Σ̃

∗ has diagonal entries
equal to the (diverging) variances of the (diverging) de-
grees. A rigorous mathematical proof that this class of
graphs obeys eq. (23) with τ∗α∞

= 0 is left for a separate
paper [24].
If the number of constraints is infinite and, roughly

speaking, the canonical fluctuations of all but a finite
number of constraints grow as the size of the system
grows, then all but a finite number of eigenvalues will
diverge, and again τ∗α∞

= 0. This is a useful criterion

in hybrid situations where Σ̃
∗ has both finite and infi-

nite eigenvalues. So, in order to have a finite correction
τ∗α∞

> 0 surviving in eq. (23), we need an infinite number
of finite constraints. We expect this to occur in sparse
random graphs with given degrees, for which αn = n,
K = K̃ = n, and Σ̃

∗ is nearly diagonal with diagonal
entries equal to the (finite) variances of the (finite) de-
grees [24]. When τ∗α∞

> 0, the value of δ∗α∞
has to be

calculated independently from eq. (23) for the specific
model, using either the explicit form of Ω~C∗ (if known)
or carrying out the integral in eq. (19) explicitly and then
taking the limit (22).
Note that, in our approach, whether τ∗α∞

is zero has
nothing to do with EE or its breakdown. By definition
of αn, δ

∗
α∞

is always strictly positive, irrespective of the
value of τ∗α∞

. Whether EE holds depends on a differ-
ent property, namely whether αn = o(n). Our results
above enable the calculation of δ∗α∞

, and hence αn, in
terms of purely canonical quantities. This allows check-
ing whether the ensembles are equivalent, without having
to calculate microcanonical quantities.
We can now exploit our results in order to provide ex-

act and more general replacements for eqs. (9), (10), (11)
and (12), valid even when EE is violated. Note that
eq. (22) implies

∆∗ = αnδ
∗
α∞

+ o(αn), (25)

where δ∗α∞
is given by eq. (23). This implies that eq. (18)

can be rearranged as follows:

Ω~C∗ = eS
∗
can−∆∗

= eS
∗
can−αnδ

∗
α∞

−o(αn)

=
e−αnδ

∗
α∞

−o(αn)

P ∗
can(G

∗)
. (26)
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The above expression is the correct extension of eq. (9).
We see the appearance of the extra term δ∗α∞

of finite
order. As a consequence, eq. (10) should be generalized
to

lim
n→∞

lnΩ~C∗

αn
= lim

n→∞

S∗
can

αn
− δ∗α∞

, (27)

= lim
n→∞

S∗
can − ln

√

det(2πΣ̃∗)

αn
− τ∗α∞

which represents a novel, corrected identify mapping the
enumeration problem to the calculation of the canonical
entropy and the relative entropy or the covariance matrix
of the constraints. Correspondingly, eqs. (11) and (12)
should be replaced by

P ∗
mic(G

∗) = P ∗
can(G

∗) e∆
∗

= P ∗
can(G

∗) eαnδ
∗
α∞

+o(αn)

(28)
and

lim
n→∞

1

αn
ln
P ∗
mic(G

∗)

P ∗
can(G

∗)
= δ∗α∞

(29)

respectively.
Equations (26), (27), (28) and (29) restore an exact,

nontrivially modified connection between statistical en-
sembles, valid irrespective of whether they are equiv-
alent. In presence of EE, i.e. if αn = o(n), then
αnδ

∗
α∞

+ o(αn) = o(n) and these expressions reduce to
eqs. (9), (10), (11) and (12) respectively. By contrast,
if EE does not hold, then the factor neglected in eq. (9)
is actually (at least) exponential in n, i.e. the volume
of microcanonical configurations is exponentially smaller
than estimated in that equation. Remarkably, our results
restore, in a properly modified way, the possibility of con-
veniently expressing microcanonical quantities in terms
of purely canonical ones, even beyond the regime of EE.
As a byproduct, this shows that it is indeed possible to
check for EE (i.e. whether αn = o(n)) without having to
calculate the microcanonical ensemble.
We finally note that all choices of αn with the same

leading order are equivalent. This can be exploited to
introduce a sort of ‘natural’ α̃n defined as

α̃n = ln

√

det(2πΣ̃∗) (30)

(note that the term on the right is n-dependent, despite
the absence of an explicit symbol “n” in our notation).
The above choice is admissible, because it always en-
sures δ∗α̃∞

∈ (0,+∞). Moreover, it allows to rewrite a
number of expressions in more compact form. In partic-
ular, checking for EE simply reduces to checking whether
α̃n = o(n), i.e.

ln

√

det(2πΣ̃∗) = o(n) ⇐⇒ EE. (31)

This explicit and simple criterion is an important byprod-
uct of the results presented in this paper. Moreover, if

there is at most a finite number of eigenvalues of Σ̃∗ that
have a finite limit as n → ∞, then τ∗α̃∞

= 0 and we can
rewrite eqs. (23) and (25) as

δ∗α̃∞
= 1, (32)

∆∗ = α̃n + o(α̃n). (33)

Similarly, eqs. (26) and (27) become

Ω~C∗ = eS
∗
can−α̃n−o(α̃n), (34)

lim
n→∞

lnΩ~C∗

α̃n
= lim

n→∞

S∗
can

α̃n
− 1, (35)

while eqs. (28) and (29) become

P ∗
mic(G

∗) = P ∗
can(G

∗) eα̃n+o(α̃n), (36)

lim
n→∞

1

α̃n
ln
P ∗
mic(G

∗)

P ∗
can(G

∗)
= 1 (37)

respectively. Equations (32)-(37) are an elegant and com-
pact summary of our results in the case τ∗α̃∞

= 0.
To summarize, in this paper we have established new

general connections between conjugate ensembles. So far,
the microcanonical and canonical ensembles have been
regarded as dual representations of the same system that
are valid under different physical conditions (such as en-
ergetic isolation and thermal equilibrium) and only co-
incide under certain assumption (thermodynamic limit
and ensemble equivalence). By contrast, we have found
that the relationship between the two ensembles is much
stronger than mere conjugacy or duality, as it can be
formulated in terms of mathematical identities that al-
low the two ensembles can be calculated from each other
in full generality, even when neither the thermodynamic
limit nor the assumption of ensemble equivalence are in
order. Our results significantly expand the usefulness
of the canonical ensemble as a tool to carry out exact

physical and combinatorial calculations that are unfeasi-
ble in the microcanonical one even when EE breaks down
and/or for finite system size. In particular, we found new
and very general enumeration formulae (both exact and
asymptotic) that can be applied to a variety of (possibly
unsolved) combinatorial problems. What is exciting from
a physical point of view is that the enumeration of all the
configurations with a given hard value of the constraints
can be re-expressed in terms of the conjugate canonical
distribution with softened constraints, extended to the
complex domain. In the thermodynamic limit, the two
ensembles are connected via the relative entropy density,
which we found to be proportional to the logarithm of
the determinant of the matrix of canonical covariances
of the constraints, plus a possible correction term that is
nonzero only if that matrix has an infinite number of fi-
nite eingenvalues. These results offer new insight into the
foundations of statistical physics and its connections to
combinatorial enumeration. Moreover, they significantly
expand the toolkit for studying systems with nonequiva-
lent ensembles.
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SUPPLEMENTARY INFORMATION

accompanying the paper
“Reconnecting statistical physics and combinatorics

beyond ensemble equivalence”

by T. Squartini and D. Garlaschelli

The likelihood function

We first recall the result, shown e.g. in [4, 5], that

the value ~θ∗ that realizes 〈~C|~θ∗〉 = ~C∗ in eq. (4) can
be equivalently defined as the value that maximizes the
log-likelihood function

L∗(~θ) ≡ lnPcan(G
∗|~θ)

= −~θ · ~C∗ − lnZ(~θ) (S1)

(where the asterisk now indicates dependence of L on G
∗

and hence on ~C∗, but not on ~θ∗). In other words,

~θ∗ = argmax~θ

{

L∗(~θ)
}

. (S2)

To prove the above result, we calculate the first partial
derivatives of L∗

∂

∂θk
L∗(~θ) = −C∗

k −
1

Z(~θ)

∂

∂θk
Z(~θ)

= −C∗
k +

∑

G∈G

Ck(G)
e−

~θ·~C(G)

Z(~θ)

= 〈Ck|~θ〉 − C∗
k (S3)

and note that eq. (4) implies that ~θ∗ is such that

∂

∂θk
L∗(~θ)

∣

∣

∣

∣

~θ=~θ∗
= 〈Ck|~θ

∗〉 − C∗
k = 0 ∀k. (S4)

In other words, ~θ∗ is a stationary point for L∗. It is also
the only such point.

To prove that ~θ∗ is also a global maximum, we consider
the second derivatives

∂2

∂θk∂θl
L∗(~θ) =

∑

G∈G

Ck(G)
e−

~θ·~C(G)

Z(~θ)

∑

G∈G

Cl(G)
e−

~θ·~C(G)

Z(~θ)

−
∑

G∈G

Ck(G)Cl(G)
e−

~θ· ~C(G)

Z(~θ)

= 〈Ck|~θ〉〈Cl|~θ〉 − 〈CkCl|~θ〉

= −Cov[Ck, Cl]~θ (S5)

and evaluate them at the point ~θ = ~θ∗, to get

∂2

∂θk∂θl
L∗(~θ)

∣

∣

∣

∣

~θ=~θ∗
= −Cov[Ck, Cl]~θ∗ = −Σ∗

k,l (S6)

where Σ∗
k,l, as in eq. (14), denotes the covariance of the

constraints Ck and Cl under the canonical probability
P ∗
can. The above result implies that, at the particular

point ~θ∗, the Hessian matrix Λ
∗ of second derivatives of

L∗ is equal to minus the covariance matrix Σ
∗ of the

constraints.

Since covariance matrices are positive semi-definite
(i.e. their eigenvalues are all non-negative), Λ∗ is neg-
ative semi-definite (i.e. its eigenvalues are all non-
positive). The only case when some eigenvalues of Σ∗

are zero is when some of the K constraints are not lin-
early independent of the other constraints. This means
that there are some redundant constraints, i.e. some of
the imposed properties are linear combinations of other
imposed properties. While this situation is generally not
encountered, it may happen in certain phases of some
models. If we exclude this circumstance, Σ∗ is positive
definite and Λ

∗ is negative definite, which implies that
~θ∗ is a maximum of L∗(~θ). Since it is the only stationary

point, it is necessarily a global maximum for L∗(~θ).

By contrast, in the case when only an effective number
K̃ < K if constraints are linearly independent of each

other, there will be degenerate maxima for L∗(~θ). If we

order the constraints in such a way that the first K̃ ones
are all linearly independent, while the following K − K̃

ones are dependent on the first K̃ ones, then ~θ∗ will be a

global maximum of L∗(~θ) in the subspace spanned by the

first K̃ Lagrange multipliers, while along the other K −

K̃ directions L∗(~θ) will be constant. Correspondingly,

there will be a (K−K̃)-dimensional family of degenerate

solutions ~θ∗ to eq. (4).

In either case, the above discussion proves eq. (S2),
which is a crucial result allowing us to prove a variety of
other identities below.

Relation between canonical entropy and likelihood

We here prove the important result that the maximized

log-likelihood L∗(~θ∗) coincides with −S∗
can. This is easily

demonstrated as follows:

L∗(~θ∗) = lnP ∗
can(G

∗)

= −~θ∗ · ~C(G∗)− lnZ(~θ∗)

= −~θ∗ · ~C∗ − lnZ(~θ∗)

= −~θ∗ · 〈~C|~θ∗〉 − lnZ(~θ∗)

= 〈lnP ∗
can(G)|~θ∗〉

= −
∑

G

P ∗
can(G) lnP ∗

can(G)

= −S∗
can. (S7)

The above result proves eq. (8) and will be useful multiple
times in the following.
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Exact relation between Ω~C∗ and P
∗

can

Here we prove one of our main results, i.e. the exact
formula (13) connecting Ω~C∗ , P ∗

mic and P
∗
can. Recall that

we assumed that Ck(G) can only take integer values, e.g.
because it counts certain properties of G. Importantly,

we also assume that the parameter value ~θ∗ conjugate to
~C∗ is not a critical point of any phase transition. The

possibility that ~θ∗ approaches a phase boundary is dis-
cussed separately elsewhere in the paper.
Using the integral representation δx,y =

∫ +π

−π
dψ
2π e

iψ(x−y) of the Kronecker symbol (where

ψ ∈ [−π,+π] ⊂ R), and extending it to the K-
dimensional case, we can write

Ω~C∗ =
∑

G∈G

δ~C∗, ~C(G)

=
∑

G∈G

K
∏

k=1

∫ +π

−π

dψk
2π

eiψk[C
∗
k
−Ck(G)]

=
∑

G∈G

K
∏

k=1

∫

αk

dzk
2πi

ezk[C
∗
k
−Ck(G)], (S8)

where in the last equality we have rewritten the integral
in terms of the complex variable zk = θk + iψk (with θk
and ψk real) and reinterpreted the real domain of inte-
gration [−π,+π] ⊂ R for ψk as a segment αk ⊂ C for
zk, going from the point of (real, imaginary) coordinates
(0,−π) to the point (0,+π) along the imaginary axis.
This trick, although apparently pointless, allows us to
perform a convenient operation, as we now explain.
Note that the function fk(zk) = ezk[C

∗
k
−Ck(G)] being

integrated is analytical over the entire complex plane
(hence it is an entire function) and its integral along any
closed contour is therefore zero:

∮

dzkfk(zk) = 0. (S9)

For convenience, let us consider the closed rectangular
contour formed by the following four segments in the
complex plane: the aforementioned upward vertical seg-
ment αk going from (0,−π) to (0,+π), the horizontal
segment βk going from (0,+π) to (θ∗k,+π), the downward
vertical segment γk going from (θ∗k,+π) to (θ∗k,−π), and
the horizontal segment δk going from (θ∗k,−π) back to
the starting point (0,−π). We can rewrite eq. (S9) for
this particular contour as

[
∫

αk

dzk +

∫

βk

dzk +

∫

γk

dzk +

∫

δk

dzk

]

fk(zk) = 0. (S10)

Now, since Ck(G) (and hence C∗
k) is assumed to take

only integer values, we have the following periodicity:

fk(zk + 2πi) = e(zk+2πi)[C∗
k
−Ck(G)] = fk(zk). (S11)

This implies that, for any value of θk, fk takes the same
value in each pair of points of the type (θk,−π), (θk,+π).

Since the segments βk and δk go over such pairs of points
in opposite direction, we have

[
∫

βk

dzk +

∫

δk

dzk

]

fk(zk) = 0 (S12)

which, together with eq. (S10), implies
∫

αk

dzkfk(zk) = −

∫

γk

dzkfk(zk) =

∫

ωk

dzkfk(zk), (S13)

where ωk is the upward vertical segment going from
(θ∗k,−π) to (θ∗k,+π), i.e. the same as γk but going in
opposite direction. Using eq. (S13), and denoting with ~ω
the collection of all segments {ωk}

K
k=1, eq. (S8) becomes

Ω~C∗ =
∑

G∈G

K
∏

k=1

∫

ωk

dzk
2πi

ezk[C
∗
k
−Ck(G)]

=
∑

G∈G

∫

~ω

d~z

(2πi)K
e~z·[

~C∗
−~C(G)]

=

∫

~ω

d~z

(2πi)K
e~z·

~C(G∗)
∑

G∈G

e−~z·
~C(G)

=

∫

~ω

d~z

(2πi)K
eH(G∗,~z)Z(~z)

=

∫

~ω

d~z

(2πi)K
P−1
can(G

∗|~z),

=

∫ +~π

−~π

d~ψ

(2π)K
P−1
can(G

∗|~θ∗ + i ~ψ), (S14)

where we have extended the domain of H(G∗, ~θ), Z(~θ)

and Pcan(G
∗|~θ), all viewed as functions of ~θ, from RK to

CK . In so doing, they have become complex functions of
complex vectors. To produce the last equality, we have
rewritten the integral for zk along the complex segment
ωk ⊂ C back as an integral for ψk along the real interval
[−π,+π] ⊂ R. Correspondingly, we have denoted ±~π =

±π~1, where ~1 is the K-dimensional vector with all unit
entries.
Note that, to be able to interchange the order of sum

and integral in the derivation of eq. (S14) even in the
limit n → ∞ (which we will take later on), we have
to assume uniform convergence of the partial sums of
∑

G∈G
e−~z·

~C(G) (which becomes an infinite series in such
limit) to Z(~z). Note that our assumptions also ensure
that Z(~z) is a holomorphic (or analytic) function in a
domain containing ~ω. For finite n, this is automatically
ensured by the fact that Z(~z) is a finite sum of exponen-
tials (which are all holomorphic). In the thermodynamic
limit n → ∞, the analyticity of Z(~z) is ensured by our
assumption that ~ω does not cross any boundary between

different thermodynamic phases, i.e. that the point ~θ∗,
which is the only real point crossed by ~ω, is not a critical
point of any phase transition.

Recalling from eq. (2) that Pmic(G
∗|~C∗) = Ω−1

~C∗
,

eq. (S14) immediately proves eq. (13) in the main text,
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which provides an exact relationship between the micro-
canonical and the canonical probability extended to the
complex domain. Remarkably, this relationship is valid
even for finite n and even if EE does not hold.

Asymptotic relation between Ω∗ and the canonical
(co)variances

Here we prove another main result, i.e. we start from
eq. (S14) and, using a saddle point calculation, arrive
at its asymptotic expression given in eq. (15). We keep

assuming that ~θ∗ is not a critical point of any phase tran-
sition.
First, extending the log-likelihood function to the com-

plex domain via the definition

L∗(~z) ≡ lnPcan(G
∗|~z), (S15)

we rewrite eq. (S14) as

Ω~C∗ =

∫

~ω

d~z

(2πi)K
e−L

∗(~z). (S16)

Second, we note that L∗(~z) is a holomorphic func-
tion, which follows from the analyticity of Pcan(G

∗|~z)
away from phase transitions and from the fact that, when
Pcan(G

∗|~z) is real-valued, it is positive and hence its log-
arithm is analytic.
Third, we notice that the point ~z∗ ∈ ~ω of coordinates

(~θ∗,~0) is a saddle point for L∗(~z). To see this, we extend
the calculation in eq. (S3) to the complex domain to get

∂

∂zk
L∗(~z) = 〈Ck|~z〉 − C∗

k (S17)

and note that eq. (S4) implies

∂

∂zk
L∗(~z)

∣

∣

∣

∣

~z=~z∗
= 〈Ck|~θ

∗〉 − C∗
k = 0 ∀k. (S18)

The above result shows that ~z∗ is a stationary point for
L∗(~z). As always happens in the complex domain, such
a point is necessarily a saddle point. This can be con-
firmed here by noting that, as we move across ~z∗ along
the real direction, the second derivatives are given by
eq. (S6) and the corresponding Hessian matrix is, as al-
ready mentioned, negative semi-definite. On the con-
trary, as we show later, as we move across ~z∗ along the
imaginary direction, all second derivatives have the op-
posite sign and the Hessian matrix is therefore positive
semi-definite. The sign difference of the second deriva-
tives calculated along the real and imaginary directions
implies that ~z∗ is a saddle point.
Fourth, we notice that ~z∗ is the only relevant saddle

point for evaluating eq.(S16). Due to the periodicity
L∗(~z) = L∗(~z+2πi~u) where ~u is any vector in ZK , all the

points of the type ~z∗+2πi~u, having coordinates (~θ∗, 2π~u),
are also saddle points for L∗(~z). However, among all

these saddle points, ~z∗ is the only one encountered along
the path ~ω. It is then reasonable to assume that there are

no other saddle points along ~ω, i.e. no other points (~θ∗, ~ψ)

with ~ψ 6= 0 such that 〈~C|~θ∗ + i ~ψ〉 = ~C∗ (the existence

of such points is unlikely, given that ~C∗ ∈ RK). At the
very least, we assume that those points, if present, can
be avoided via a suitable deformation of ~ω (since L∗(~z)
is analytical, such deformation is possible, unless those
points form an infinite curve separating ~z∗ from the end-
points ±~π of integration, or a closed curve surrounding
~z∗ and/or ±~π).

The above considerations imply that, in the thermody-
namic limit, eq. (S16) naturally lends itself to a saddle-
point calculation [22] leading to eq. (15). We now show
this in detail. We define the complex-valued function

U∗(~ψ) = L∗(~θ∗ + i ~ψ), U∗ : RK → C (S19)

and Taylor-expand it around ~ψ = ~0:

U∗(~ψ) =
∞
∑

m=0

1

m!

∑

∑
k
ak=m

∂m

∂ψa11 . . . ∂ψaKK
U(~ψ )

∣

∣

∣

∣

~ψ=~0

K
∏

k=1

ψakk

= U∗(~ψ)

∣

∣

∣

∣

~ψ=~0

+

K
∑

k=1

ψk
∂

∂ψk
U∗(~ψ)

∣

∣

∣

∣

~ψ=~0

+
1

2

∑

k,l

ψkψl
∂2

∂ψk∂ψl
U∗(~ψ)

∣

∣

∣

∣

~ψ=~0

+ V∗(~ψ), (S20)

where V∗(~ψ) = O(|~ψ|3) contains all the higher-order

terms and is such that V∗(~0) = 0. Note that the func-

tion U∗ has the periodicity U∗(~ψ) = U∗(~ψ + 2π~u) for
any ~u ∈ ZK , therefore the above expansion only makes
sense within one such period. This is consistent with the
fact that, in eq. (S14), the domain of integration for each
variable ψk is the single period [−π,+π]. Now, from the
identity

∂m

∂ψa11 . . . ∂ψaKK
U∗(~ψ )

∣

∣

∣

∣

~ψ=~0

= im
∂m

∂θa11 . . . ∂θakk
L∗(~θ )

∣

∣

∣

∣

~θ= ~θ∗

we realize that all the m-th order derivatives of U∗(~ψ) at
~ψ = ~0 are real if m is even and purely imaginary if m is

odd, because all the derivatives of L∗(~θ), when evaluated

at ~θ = ~θ∗, are real. Moreover, we can use eqs. (S4), (S6)
and (S7) to obtain

U∗(~ψ)

∣

∣

∣

∣

~ψ=~0

= L∗(~θ)

∣

∣

∣

∣

~θ= ~θ∗
= −S∗

can, (S21)

∂

∂ψk
U∗(~ψ)

∣

∣

∣

∣

~ψ=~0

= i
∂

∂θk
L∗(~θ)

∣

∣

∣

∣

~θ=~θ∗
= 0, (S22)

∂2

∂ψk∂ψl
U∗(~ψ)

∣

∣

∣

∣

~ψ=~0

= −
∂2

∂θk∂θl
L∗(~θ)

∣

∣

∣

∣

~θ=~θ∗
= Σ∗

k,l.(S23)

Equation (S23) confirms that ~z∗ is a stationary point for
L∗(~z), as anticipated.
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The expansion in eq. (S20) can then be rewritten as

U∗(~ψ) = −S∗
can +

1

2

∑

k,l

ψkψlΣ
∗
k,l + V∗(~ψ) (S24)

and, via eq. (S19), we can rewrite eq. (S16) as

Ω~C∗ =

∫ +~π

−~π

d~ψ

(2π)K
e−L

∗(~θ∗+i~ψ)

=

∫ +~π

−~π

d~ψ

(2π)K
e−U

∗(~ψ),

= eS
∗
can

∫ +~π

−~π

d~ψ

(2π)K
e−

1
2
~ψΣ

∗ ~ψ e−V
∗(~ψ). (S25)

We are now ready for a saddle-point calculation [22].
Rather than using the multidimensional version of the
method, which requires the existence of a common large

factor at the exponent for all the coordinates of ~ψ, we pre-
fer iterating the one-dimensional version upon diagonal-
izing Σ

∗, so that we can keep track of the asymptotic be-
haviour of each of its eigenvalues separately. Let us there-
fore carry out a volume-preserving (i.e. with unit Jaco-

bian determinant) linear change of variables ~ψ 7→ ~ξ(~ψ)

that diagonalizes Σ∗ while keeping ~ξ(~0) = ~0 and rewrite

Ω~C∗ = eS
∗
can

∫ ~ξ+

~ξ−

d~ξ

(2π)K
e−

1
2

∑
K

k=1
λ∗
k
ξ2
k

eW∗(~ξ)
, (S26)

where λ∗k is the k-th eigenvalue of Σ∗, W∗(~ξ) = V∗[~ψ(~ξ)]

(so that W∗(~0) = V∗(~0) = 0), and ~ξ± = ~ξ(±~π).
As discussed previously, the K eigenvalues of Σ∗ can-

not be negative. We already mentioned that if only
K̃ ≤ K constraints are mutually independent, then
K − K̃ eigenvalues will be zero. Let us now carry out
the integration in eq. (S26) over a single variable ξl for
which the corresponding eigenvalue λ∗l is zero. In such
a case, eq. (S24) implies that, along the direction ξl,

the function U∗[~ψ(~ξ)] is constant and equal to the value

U∗[~ψ(~ξ)]
∣

∣

ξl=0
. This means that, along ξl, W

∗(~ξ) is also

constant and equal to W∗(~ξ)
∣

∣

ξl=0
. Therefore, if λ∗l = 0

then in eq. (S26) the integral over ξl is the definite inte-
gral of a constant function, which generates a contribu-
tion ξ+l − ξ−l = 2π. This follows from the fact that the

trasformation ~ψ 7→ ~ξ is volume-preserving, so it should
keep the area along each redundant direction equal to
the original area 2π (because each such direction can be
added arbitrarily without changing the volume spanned
by the non-redundant directions). This contribution ef-
fectively replaces the factor (2π)K at the denominator
with (2π)K−1.

Ω~C∗ = eS
∗
can

∫ ~ξ+
−l

~ξ−
−l

d~ξ−l
(2π)K−1

e−
1
2

∑
k 6=l

λ∗
k
ξ2
k

eW∗(~ξ)
∣

∣

ξl=0

, (S27)

where ~ξ−l denotes the (K−1)-dimensional vector includ-
ing all variables except ξl. Repeating the procedure for all

the zero eigevalues, the factor (2π)K−1 becomes (2π)K̃ .

Let us now start again from eq. (S26) and consider an
eigenvalue λ∗l that is strictly positive. The correspond-

ing term e−
1
2
λ∗
l
ξ2
l in the integral is now an unnormalized

Gaussian function with zero mean and variance 1/λ∗l . If

λ∗l grows with n, the Gaussian function e−
1
2
λ∗
l
ξ2
l will be-

come more and more peaked aroud zero as n → ∞ and
its limit becomes the Dirac delta function δ(ξl) times the

normalization factor
√

2π/λ∗l . Integrating over the vari-
able ξl, for n→ ∞ the limiting δ(ξl) will select the unique

value e−W
∗(~ξ)

∣

∣

ξl=0
in eq. (S26). If λ∗l remains finite (and

positive) as n grows, there is an additional correction
factor that can be estimated [22] as [1 +O (1/λ∗l )]. So in
general we get

Ω~C∗ =
eS

∗
can

√

λ∗l

∫ ~ξ+
−l

~ξ−
−l

d~ξ−l
(2π)K−1/2

e−
1
2

∑
k 6=l

λ∗
k
ξ2
k

eW∗(~ξ)
∣

∣

ξl=0

[1 +O (1/λ∗l )]

(S28)

where ~ξ−l denotes again the (K − 1)-dimensional vector
including all variables except ξl.

Iterating the above calculations for all eigenvalues, and
using either eq.(S27) (whenever λ∗l = 0) or eq. (S28)
(whenever λ∗l > 0), we arrive at the asymptotic expan-
sion

Ω~C∗ =
eS

∗
can

√

λ∗1 · · ·λ
∗

K̃

∏K̃
k=1 [1 +O (1/λ∗k)]

(2π)K̃−K̃/2 eW∗(~0)

=
eS

∗
can

√

(2π)K̃ det Σ̃∗

K̃
∏

k=1

[1 +O (1/λ∗k)]

=
eS

∗
can T ∗

√

det(2πΣ̃∗)
, (S29)

where Σ̃
∗ is the reduced K̃ × K̃ matrix of the canonical

(co)variances of the K̃ ≤ K independent constraints, and
we have reordered the original K constraints in such a
way that the first K̃ ones are independent (so the first K̃
eigenvalues are non-zero). The above derivation proves
eq. (15). The asymptotic behaviour of T ∗ as a function

of that of the eigenvalues of Σ̃∗ is discussed later.

Exact calculation of ∆∗

We now use the previous results in order to calculate
the relative entropy ∆∗ explicitly. Inserting eq. (S14)
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into eq. (18) implies

∆∗ = − ln

∫ +~π

−~π

d~ψ

(2π)K
Pcan(G

∗|~θ∗)

Pcan(G∗|~θ∗ + i ~ψ)

= − ln

∫ +~π

−~π

d~ψ

(2π)K
e−H(G∗,~θ∗)

Z(~θ∗)

Z(~θ∗ + i ~ψ)

e−H(G∗,~θ∗+i~ψ)

= − ln

∫ +~π

−~π

d~ψ

(2π)K
e−

~θ∗·~C∗+~θ∗·~C∗+i~ψ·~C∗ Z(~θ∗ + i ~ψ)

Z(~θ∗)

= − ln

∫ +~π

−~π

d~ψ

(2π)K
ei
~ψ· ~C∗ Z(~θ∗ + i ~ψ)

Z(~θ∗)

= − ln

∫ +~π

−~π

d~ψ

(2π)K
ei
~ψ· ~C∗

〈e−i
~ψ·~C |~θ∗〉

= − ln

∫ +~π

−~π

d~ψ

(2π)K
〈ei

~ψ·(~C∗
−~C)|~θ∗〉 (S30)

where we have used the definition (5) of ensemble aver-

age of the (complex) function X(G) = ei
~ψ·[ ~C∗

−~C(G)] and
exploited the fact that

Z(~θ∗ + i ~ψ)

Z(~θ∗)
=

∑

G
e−(~θ∗+i~ψ)·~C(G)

∑

G
e−~θ∗· ~C(G)

=
∑

G

Pcan(G|~θ∗)e−i
~ψ·~C

= 〈e−i
~ψ· ~C |~θ∗〉 (S31)

Equation (S30) proves eq. (19) in the main text. If the
integral can be carried out explicitly, eq. (S30) allows an
exact calculation of ∆∗ in terms of only the canonical
probability P ∗

can, thus avoiding any microcanonical enu-
meration.

Asymptotic behaviour of T
∗

We now study the asymptotic behaviour of the correc-
tion term T ∗ appearing in eqs. (15) and (20).

We already noted that, in general, some of the nonzero
eigenvalues of Σ̃∗ may diverge, while some may remain
finite, as n → ∞. If there are K∞ ≤ K̃ diverging eigen-
values, and if we choose an ordering such that these eigen-
values are the first ones, then their contribution to T ∗ is

K∞
∏

k=1

[1 +O (1/λ∗k)] = 1+O

(K∞
∑

k=1

1/λ∗k

)

= 1+O(K∞/λ
∗
∞)

(S32)
where λ∗∞ is the (diverging) harmonic mean of the K∞

diverging eigenvalues:

1

λ∗∞
=

1

K∞

K∞
∑

k=1

1

λ∗k
. (S33)

The remaining K̃ −K∞ finite eigenvalues give a contri-
bution to T ∗ equal to

K̃
∏

k=K∞+1

[1 +O (1/λ∗k)] =

K̃
∏

k=K∞+1

O
(

1/λ∗k
)

= O
(

(λ̄∗)−(K̃−K∞)
)

,(S34)

where

λ̄∗ ≡

( K̃
∏

k=K∞+1

λ∗k

)1/(K̃−K∞)

(S35)

is the (finite) geometric mean of the K̃−K∞ finite eigen-
values.
Combining eqs. (S32) and (S34), we arrive at

T ∗ =
[

1 +O(K∞/λ
∗
∞)

]

O
[

(λ̄∗)−(K̃−K∞)
]

(S36)

and, taking the logarithm, we get

lnT ∗ = ln
[

1 +O(K∞/λ
∗
∞)

]

+O(K̃ −K∞). (S37)

Correspondingly, the quantity τ∗α∞
defined in eq. (24)

becomes

τ∗α∞
= − lim

n→∞

ln
[

1 +O(K∞/λ
∗
∞)

]

+O(K̃ −K∞)

αn
(S38)

The above equation is very important as it informs us
about the limiting behaviour of δ∗α∞

, as we now discuss.
Let us first consider the case when all the nonzero

eigenvalues are diverging, i.e. K∞ = K̃. Note that this
is the typical situation, since the constraints are gener-
ally macroscopic quantities whose values, as well as those
of their fluctuations (hence the eigenvalues of the covari-
ance matrix), diverge at least like n in the thermody-
namic limit. If the number of constraints remains finite as
n → ∞ (i.e. K∞ < ∞), then lnT ∗ = O(1/λ∗∞) → 0 and

∆∗ → ln
√

det(2πΣ̃∗). Stated more rigorously, for any

increasing αn we get τ∗α∞
= 0. If all eigenvalues are di-

verging, and the number K∞ of constraints diverges like
λ∗∞, lnT ∗ has now a finite limit but still vanishes upon
dividing by αn. We therefore still obtain τ∗α∞

= 0. The
same holds true as long as K∞ diverges slower than the
astronomically big number λ∗∞e

αn . Therefore τ∗α∞
= 0

whenever all eigenvalues diverge.
In the opposite case when all eigenvalues have a fi-

nite limit as n → ∞ (i.e. K∞ = 0), eq. (S37) implies

lnT ∗ = O(K̃). Upon dividing by αn and taking the
limit, this term vanishes, so τ∗α∞

= 0 still holds, as long

as the number K̃ of constraints is bounded or diverges
slower than αn. By contrast, if the number of constraints
grows like αn or faster, τ∗α∞

> 0 and its value has to be
evaluated case by case.
Combining all the results discussed so far, we conclude

that eq. (23) with τ∗α∞
= 0 always holds as an exact

result, unless Σ∗ has an infinite number (growing at least
like αn) of finite eigenvalues, in which case τ∗α∞

> 0 and
has to be calculated for the specific model under scrutiny.


