
On secure implementation of an IHE XUA-based
protocol for authenticating healthcare professionals ?

Massimiliano Masi, Rosario Pugliese, and Francesco Tiezzi

Università degli Studi di Firenze, Viale Morgagni, 65 - 50134 Firenze, Italy
masi@math.unifi.it, {pugliese,tiezzi}@dsi.unifi.it

Abstract. The importance of the Electronic Health Record (EHR) has been ad-
dressed in recent years by governments and institutions. Many large scale projects
have been funded with the aim to allow healthcare professionals to consult pa-
tients data. Properties such as confidentiality, authentication and authorization
are the key for the success for these projects. The Integrating the Healthcare En-
terprise (IHE) initiative promotes the coordinated use of established standards
for authenticated and secure EHR exchanges among clinics and hospitals. In par-
ticular, the IHE integration profile named XUA permits to attest user identities
by relying on SAML assertions, i.e. XML documents containing authentication
statements. In this paper, we provide a formal model for the secure issuance of
such an assertion. We first specify the scenario using the process calculus COWS
and then analyse it using the model checker CMC. Our analysis reveals a potential
flaw in the XUA profile when using a SAML assertion in an unprotected network.
We then suggest a solution for this flaw, and model check and implement this so-
lution to show that it is secure and feasible.

1 Introduction

In recent years, the exchange of Electronic Health Records (EHRs) among clinics and
hospitals has become an interesting field of research and study for academia and the
industry. An EHR is a set of sensitive data containing all healthcare history of a patient
(e.g. medical exams or prescriptions).

Two important concepts in EHR management are security and interoperability: the
content of an EHR cannot be disclosed to unauthorized people without an explicit pa-
tient consent and has to be accessible by heterogeneous systems. These requirements
impose that any software participating in an EHR exchange must adhere to common
specifications.

Integrating the Healthcare Enterprise (IHE) [1] is a worldwide initiative founded for
promoting the coordinated use of established standards to improve information sharing
in an healthcare scenario. To achieve security and interoperability, many profiles for in-
tegrating different systems have been proposed by IHE. These profiles can be combined
for building healthcare applications by using a Service Oriented Computing (SOC) ap-
proach and OASIS standards such as SAML [2], ebXML [3], and WS-Trust [4].

? This work has been supported by the EU project Sensoria, IST-2005-016004.

Document
Source

Document
Counsumer

Document
Registry

Document
Repository

Provide and Register
Document Set

Register
Document Set

Retrieve
Documents

Query
Documents

Fig. 1. The XDS model

IHE specifications are by now used to build nationwide projects with the aim of
sharing patient healthcare data, such as the French GIP-DMP [5] or the Austrian ARGE-
ELGA [6] EHR projects.

A typical EHR transmission is made by exploiting an ebXML registry/repository
model (called in IHE jargon Cross Enterprise Document Sharing, XDS), as depicted in
Figure 1. A document source (typically a medical device) provides and registers docu-
ments for a given patient to a repository that extrapolates metadata and feeds a registry.
A document consumer (a workstation used by an healthcare professional) queries the
registry for documents related to the patient. The registry searches in its metadata and
replies with a set of links. These links are used by the consumer for retrieving docu-
ments from the repository.

Confidentiality and auditing is achieved using Transport Layer Security (TLS) [7]
and logging as defined in the Audit Trail and Node Authentication (ATNA) profile [1].
Any node participating in ATNA owns an host X.509 certificate for attesting machine’s
identity. Requisites of each profile can be merged (i.e. grouped) together for building a
complete infrastructure. For instance, XDS grouped with ATNA provides a secure and
audited data exchange through TLS channels using a registry/repository model.

Healthcare professionals authentication is one of the basic requirements for the ac-
cess of person related health data at regional, national and also multinational level. Au-
thentication is defined by IHE in the Cross Enterprise User Assertion (XUA) integration
profile. The XUA specification covers the use of a SAML authentication assertion is-
sued by an identity provider to be injected using WS-Security [8] during the documents
queries. Due to local government complexities where each nation / hospital / clinic
have its own authentication method, the assertion issuance process is leaved open. The
WS-Trust standard is only suggested, but not proposing a specific profile or a set of
messages to be exchanged potentially leads to weak implementations.

Because of the impact that the IHE specifications are having, formal models of
protocols and standards are needed. A large body of work has been already made on
analyzing WS-Trust protocols, see e.g. [9–12], where message-level authentication [13]
properties are verified. By relying on them, in this paper we aim at formalizing and
implementing a protocol combining WS-Trust and IHE profiles. More specifically, our
protocol is built on an XDS transaction grouped with ATNA and authenticated by an
XUA SAML assertion. To our best knowledge, this is the first tentative to formalize
protocols derived from IHE specifications.

2

<saml:Assertion><saml:Issuer> issuer-identity </saml:Issuer>
<ds:Signature> . . . </ds:Signature>
<saml:Subject><saml:NameID> username </saml:NameID>

<saml:SubjectConfirmation Method="#bearer">
<saml:SubjectConfirmationData> . . .</saml:SubjectConfirmationData>

</saml:SubjectConfirmation>
</saml:Subject>
<saml:Conditions NotBefore="ts1" NotOnOrAfter="ts2">

<saml:AudienceRestriction><saml:Audience> registry-address </saml:Audience>
</saml:AudienceRestriction>

</saml:Conditions>
<saml:AuthnStatement AuthnInstant="ts3"> . . .
</saml:AuthnStatement>
<saml:AttributeStatement> . . . </saml:AttributeStatement>

</saml:Assertion>

Fig. 2. Excerpt of a sample SAML token (using the bearer method)

The process for issuing a SAML token is a delicate task: if an assertion is stolen, a
malicious attacker can re-use it and have access to unauthorized healthcare data. One
could suggest to use TLS for authenticating channels during the issuance. In fact, IHE
supports TLS by means of ATNA for compatibility with legacy non-WS standards such
as Dicom [14] and Health Level 7 version 2 [15]. However, given the possibility by
XUA to choose any issuance process, the use of TLS should be discouraged in favor
of WS-Security. Moreover, as argued in [11], if a secure transport layer in web service
communications is used, intermediaries cannot manipulate the messages on their way;
this does not comply with the requirements of SOC. For these reasons, our proposal
does not rely on TLS.

It is worth noticing that in the IHE security model, applications should also avoid
heavy use of encryption, because the impact on performance of the current encryption
algorithms is excessive [1]. Indeed, IHE applications can even run on medical devices
with a reduced computational power.

The work presented in this paper consists of three main contributions. First, we fill
the gap leaved open by XUA by proposing a protocol (Section 2) for issuing the SAML
token according to the IHE and OASIS dictates. Second, we formally specify the proto-
col (Section 3) using the calculus COWS [16]. We then analyze (Section 4) the formal
model with the model checker CMC and show that a potentially severe security flaw
exists in the SAML assertion format specified by XUA. Third, we provide an imple-
mentation of the protocol with our revised assertion format (the implementation is only
sketched in Section 5, the interested reader is referred to [17]). We conclude by touching
upon comparisons with related work and directions for future work (Section 5).

2 An XUA-Based protocol

As previously discussed, XUA does not address the authentication mechanisms of the
local network. Instead, it leverages on the abstraction layer introduced by SAML. The
SAML OASIS standard is a set of specification documents defining assertions (or to-
kens) and a protocol to exchange them. A SAML authentication assertion is an XML
document issued by a Security Token Service (STS)1 that contains statements about

1 For the sake of simplicity, we assume an STS that is directly able to authenticate users, i.e. it
plays also the role of the identity provider.

3

C → STS : C,msgId1, STS,UT(user, salt, int), ts1,RST(REG) (1)

STS→ C : STS,C,msgId2,msgId1,RSTR(ctx, {STS, n, ts, ctx}dKey) (2)

C → STS : msgId3,msgId2, STS, ts2,RSTR(ctx, {n + 1,C,msgId3,msgId2, ctx}K+
STS

) (3)

STS→ C : C, STS,msgId4,msgId3,RSTRC(RSTR({[STS, ts′, user,REG]}K−STS
)) (4)

C → REG : C,REG,msgId5, {[STS, ts′, user,REG]}K−STS
, ‘Susan’ (5)

REG→ C : REG,C,msgId6,msgId5, docLinks (6)

Table 1. The proposed XUA protocol

an authentication procedure performed by an underlying authentication mechanism
(such as Kerberos) for a subject. An example is shown in Figure 2. The SAML to-
ken is then used by the service requester to interact with the services listed in the
AudienceRestriction element.

The contacted service provider uses the assertion for authenticating the requester
by verifying the digital signature of the trusted issuer. SAML subjects can be confirmed
with the method listed in the SubjectConfirmation element. Here, we are interested
in two methods named bearer [2] and holder-of-key (HoK) [18]. The bearer subject
confirmation method tells the service provider that the subject of the assertion is the
presenter (i.e. the bearer) of the assertion. In the holder-of-key method, STS binds an
identity for the subject (or for the requester) as X.509 data. By this means, we set the
subject of the assertion as the healthcare professional with confirmation data as the
ATNA certificate of the requesting machine. The service provider can compare such
data with the X.509 identity carried in the TLS transaction.

By means of the formal investigation presented in Section 4, we discovered a secu-
rity flaw due to the format of the SAML assertion. XUA explicitly says that the bearer
subject confirmation method shall be supported. However, in a large scale network as
described before, it is unrealistic to assume that each node is trusted. Compromised
nodes may exist and if one is able to obtain a SAML assertion issued for another, au-
thorized node, with the bearer method it can re-use the assertion to gain access to secret
resources. In fact, the service provider has no knowledge if the presenter of the assertion
was the original requester. With the holder-of-key method, requester identity is bound
as subject confirmation data and digitally signed by STS. The service provider can now
detect if the bearer is the node which the assertion was intended for by checking if the
identity set by STS matches the one presented in the communication channel by means
of ATNA.

In [11], the feeling of the authors is that it looks like impossible to authenticate
correctly the request for a security token issue in a two step protocol as it is instead sug-
gested in the WS-Trust specification. Since our aim is to propose a secure and authen-
ticated holder-of-key assertion issuance, we designed a challenge-response WS-Trust
protocol in four message exchanges. Our model involves an XDS transaction grouped
with ATNA and XUA for retrieving documents for a patient with id Susan. The protocol
that we propose, written in a notation commonly used for describing security protocols,
is shown in Table 1 and is graphically depicted in Figure 3.

4

Consumer Intruder STS Registry

(1). RST (1). RST

(2). Challenge RSTR(2). Challenge RSTR

(3). Challenge RSTR (3). Challenge RSTR

(4). RSTR w/ SAML(4). RSTR w/ SAML

(5). XDS Query w/ SAML

(6). XDS Query Response

(5). XDS Query w/ SAML

(6). XDS Query Response

Fig. 3. The WS-Trust protocol for SAML token issuance. Messages (5) and (6) are over TLS
channels. An intruder can steal the SAML token in message (4) and, if the subject confirmation
method is bearer, can perform an unauthorized authenticated query.

Notation {M}dKey stands for the symmetric encryption of message M using the
derived key dKey, {M}K+

STS
for the encryption of M using the public key of STS and

{[M]}K−STS
for the signature of M using STS’s private key (where [M] is the hash code of

M). ts, ts′, ts1 and ts2 are timestamps.

The consumer C initiates the protocol by sending the message (1) for request-
ing a token to STS. It sends its identity C, a unique message identifier msgId1, us-
ing WS-Addressing [19], and the identity of the Security Token Service STS. Notation
UT(user, salt, int) stands for the WS-Security Username Token Profile 1.1 [20] and con-
tains the username, a random number which acts as a cryptographic salt, and an integer,
respectively. RST(REG) is the WS-Trust 1.3 Request Security Token where the registry
address REG is the ultimate recipient of the token.

Once received the message, STS unpacks the value of the username token, unpacks
the RST(REG) element (REG must be in the STS’s list of valid assertion targets) and
computes the derived key dKey. The key is computed by STS by concatenating the pass-
word of the user (which is given as input by the real human sitting in front of the work-
station and is known by STS by means of the underlying authentication mechanism)
with the salt and then hashed using the SHA-1 algorithm. The result of this operation
is also hashed using SHA-1. This process is repeated until the total number of hash
operations equals the iteration count int. Then, STS encrypts the challenge composed
by its identity, a nonce n, a new timestamp ts and the WS-Trust context element ctx of
the challenge (i.e. an identifier defined by WS-Trust used for correlating the messages
involved in the token issuance). Indeed, STS challenges the requester in order to be
sure on its identity and attesting its availability. RSTR is the WS-Trust Request Security
Token Response element that contains the challenge data.

5

When message (2) is received by C, it computes dKey using the same algorithm
as the STS and decrypts the message (indeed, it is the only participant able to do it).
C performs the WS-Addressing checks: message (2) must contain the identifier msgId1
indicating that (2) is in response to (1). It also checks if the request comes from a partic-
ipants whose identity is included in the RSTR, by means of TLS mutual authentication,
for instance. C now trusts that the challenge really comes from STS. Then, it adds 1 to
the nonce and encrypts it, together with the message identifiers and the context, using
the STS public key. The reply is in message (3).

After receiving the message, STS decrypts the content of the RSTR, checks if the
nonce is equal to the one that it sent (plus one) and if the context is the same. If it is
able to perform all these operations, then it can attest the identity of the user sitting in
front of C. Thus, it issues the SAML assertion (it is signed by STS according to the
SAML Signature profile, as enveloped signature) and sends it to C, via message (4).
The assertion is:

{[STS, ts′, user,REG]}K−STS

where the confirmation method is bearer. In fact, if we would have used the holder-of-
key method, the assertion would be as follows:

{[C, STS, ts′, user,REG]}K−STS

The assertion then contains the requester’s identity as ATNA X.509 certificate, here
simply represented by C, the issuer identity, a timestamp, the user name and the au-
dience restriction list. We omit for simplicity all the details introduced by the SAML
specification (e.g. the assertion time range validity).

Once C has obtained a security token, it can finally query the registry REG to re-
trieve the links to the repositories containing the EHR data that it is looking for. The
query is message (5), which contains the SAML assertion.

Finally, once received message (5), REG validates the token. Using the STS’s public
key it verifies the signature and, if it is valid, delivers the requested resource (i.e. the
links docLinks) to C via message (6).

3 COWS specification of the protocol

In this section, first we report the syntax and the informal semantics of COWS2, then
we present the COWS specification of the XUA protocol in Section 2. Our specification
reflects many real-world implementation details. Algorithms, field names and message
flows are taken from OASIS standards.

3.1 COWS syntax and informal semantics

COWS [16] is a formalism specifically devised for modelling (and analysing) service-
oriented applications; in fact, its design has been influenced by the principles underlying

2 For the sake of simplicity, we present here a fragment of COWS without linguistic constructs
for dealing with forced termination, since such primitives have not been used in the protocol
specification. We refer the interested reader to [16, 21] for the presentation of the full language
and for many examples illustrating COWS peculiarities and expressiveness.

6

s ::= (services)
nil | u . u! <u, . . . ,u> | p . o? <u, . . . ,u> . s (empty activity, invoke, receive)
| s1 + s2 | s1 | s2 | [n]] s | [X] s (choice, parallel, name & var. delim.)
| ∗ s | A(u, . . . ,u) | let A(u, . . . ,u) =s in s′ end (replication, call, let definition)

Table 2. COWS syntax

the OASIS standard for orchestration of web services WS-BPEL [22]. The syntax of
COWS, written in the ‘machine readable’ format accepted by the interpreter and the
model checker CMC [23] that we use for the analysis, is presented in Table 2. It is
defined using the following notational conventions: variables (ranged over by X, Y, . . .)
start with capital letters; names (ranged over by n, m, . . . , p, p’, . . . , o, o’, . . .) start
with digits or lower case letters; identifiers (ranged over by u, u1, u2, . . . and used as
non-terminal symbol only) are either variables or names; service identifiers (ranged
over by A, A’, . . .) start with capital letters and each of them has a fixed non-negative
arity. Names are used to represent communicable values, partners and operations.

Invoke and receive are the basic communication activities provided by COWS.
Besides input and output parameters, both activities indicate an endpoint, i.e. a pair
composed of a partner name p and an operation name o, through which communi-
cation should occur. An endpoint p.o can be interpreted as a specific implementa-
tion of operation o provided by the service identified by the logic name p. An invoke
p.o! <u1, . . . , un> can proceed as soon as all arguments u1, . . . , un are names (i.e. have
been evaluated). A receive p.o? <u1, . . . , un> .s offers an invocable operation o along a
given partner name p. Partner and operation names can be exchanged in communica-
tion (although dynamically received names cannot form the endpoints used to receive
further invocations). This makes it easier to model many service interaction and recon-
figuration patterns.

A choice can be used to pick out one of a set of receive activities (in fact, the
arguments of a choice are constrained to start with a receive activity) that are enabled
for execution.

Execution of parallel terms is interleaved, except when a communication can be
performed. Indeed, this must ensure that, if more than one matching receive is ready to
process a given invoke, only one of the receives with greater priority (i.e. the receives
that generate the substitution with ‘smaller’ domain, see [16, 21] for further details) is
allowed to progress.

The delimitation operators are the only binders of the calculus: [n]] s and [X] s bind
n and X, respectively, in the scope s. Name delimitation can be used to generate ‘fresh’
private names (like the restriction operator of π-calculus), while variable delimitation
can be used to regulate the range of application of the substitution generated by an
inter-service communication. This takes place when the arguments of a receive and of
a concurrent invoke along the same endpoint match and causes each variable argument
of the receive to be replaced by the corresponding name argument of the invoke within
the whole scope of variable’s declaration. In fact, to enable parallel terms to share the
state (or part of it), receive activities in COWS do not bind variables (which is different
from most process calculi).

7

The replication operator ∗ s permits to spawn in parallel as many copies of s as nec-
essary. This, for example, is exploited to model persistent services, i.e. services which
can create multiple instances to serve several requests simultaneously.

Finally, the let construct permits to re-use the same ‘service code’, thus allowing to
define services in a modular style; let A(u, . . . ,u) =s in s′ end behaves like s′, where
calls to A can occur. A service call A(u′1, . . . ,u

′
n) occurring in the body s′ of a construct

let A(u1, . . . ,un) =s in s′ end behaves like the service obtained from s by replacing
the formal parameters u1, . . . ,un with the corresponding actual parameters u′1, . . . ,u

′
n.

3.2 Protocol specification

Due to lack of space we only present the relevant part of the COWS specification of the
XUA-based protocol and refer the interested reader to [17] for the overall specification.

To effectively take part to the protocol, each participant has to be able to call some
internal functions, defined in some basic libraries provided by the programming lan-
guage used to specify the service. These functions implement algorithms, such as SHA
for hashing, RSA for public-key cryptography and AES for symmetric key cryptogra-
phy, necessary to properly manage the data to be sent and received. An internal function
can be rendered in COWS as a term of the following form3:

*(p.req?<inputData1> . p.resp!<inputData1,outputData1>

+ p.req?<inputData2> . p.resp!<inputData2,outputData2>

+ . . . + p.req?<inputDatan> . p.resp!<inputDatan,outputDatan>)

where p indicates the partner name of the considered participant, while req and resp
indicate the operations used to call the function and to receive the result, respectively.
To guarantee that the result outputDatai is properly delivered to the caller, it is sent
back together with the correlated inputDatai. In this way, if the same function f (·) is
concurrently called, then the results will not be mixed up. Thus, in the example below

(p.req!<100> | [X] p.resp?<100,X> . s1) | (p.req!<250> | [Y] p.resp?<250,Y> . s2)

where we have two calls, the pattern-matching-based communication of COWS ensures
that, irrespective of the execution order, the occurrences of variable X in s1 will be
replaced by f (100), while the occurrences of Y in s2 will be replaced by f (250).

Each protocol participant P is rendered in COWS as a pair of service definitions of
the form A(. . .) = P within a let construct:

P(p,. . .) =
[hashReq]] [hashResp]] [encReq]] [encResp]] [decReq]] [decResp]] . . .
(sha1(p, hashReq, hashResp)

| rsa1_5_PublicKey(p,encReq,encResp,decReq,decResp)

| . . . other internal functions . . .
| P_behaviour(p,hashReq,hashResp,encReq,. . .))

P_behaviour(p,hashReq,hashResp,encReq,. . .) = sP

3 These COWS terms play a role similar to that of functions in the applied π-calculus [9, 24]

8

where p is the participant partner name and sP is the COWS term modelling the par-
ticipant’s behaviour. Name delimitations are used here to make the functions sha1,
rsa1 5 PublicKey, . . . internal by declaring that hashReq, hashResp, encReq, . . .
are private operation names known to P behaviour and to the internal functions, and
only to them.

The term representing the consumer’s behaviour is4

sts.rst!<c,msgId1,sts,user,salt,1000,timestamp1,uri,rst_req>

| [MsgId2] [Challenge] [Y] (

c.rstr?<Y,c,MsgId2,msgId1,Challenge>. c.fault!<Y,differentFrom,sts>

+ c.rstr?<sts,c,MsgId2,msgId1,Challenge>.

(-- Calculate the aes128 key based on his password

c.hashReq!<pwd,salt,1000>

| [DKey] c.hashResp?<pwd,salt,1000,DKey>.

(-- Decrypt the Challenge

c.decReq!<DKey,Challenge>

| [Nonce] [Created] [Context] [X](

c.decResp?<DKey,Challenge,X,Nonce,Created,Context>.

c.fault!<X,differentFrom,sts,for,Context>

+ c.decResp?<DKey,Challenge,sts,Nonce,Created,Context>.

(-- Encode the response

c.encReq!<gen_key,Nonce,1,c,msgId3,MsgId2,Context>

| [EncData] c.encResp?<gen_key,Nonce,1,c,msgId3,MsgId2,Context,EncData>.

(-- Encode the generated key with sts public key

c.encReq!<stsPubKey,gen_key>

| [EncKey] c.encResp?<stsPubKey,gen_key,EncKey>.

(-- Send the response to sts

sts.rstrr!<msgId3,MsgId2,sts,timestamp2,EncKey,EncData>

| [MsgId4] [SAMLTimestamp] [Signature]

-- Receive token back

c.rstrc?<c,sts,msgId3,MsgId4,SAMLTimestamp,user,uri,Signature>.

(-- Query reg for the resource identified by uri

reg.storedQuery!<c,reg,sts,msgId5,SAMLTimestamp,user,uri,

Signature,"Susan">))))))))

As expected, the consumer starts by invoking STS, by executing the invoke activity
along the endpoint sts.rst and by sending the request security token data. This invo-
cation corresponds to message (1) in Table 1, where the iteration number int is 1000 and
the registry address specified in the RST is uri. Then, the consumer waits for message
(2), by means of the two receive activities along c.rstr. Notice that, in accordance with
the WS-Addressing standard and due to the pattern-matching mechanism regulating the
COWS communication, only messages that carry the name msgId1 can be accepted by
the consumer. Moreover, the identity of STS, i.e. sts, must be contained in the mes-
sage, otherwise a fault is raised (represented by the invoke activity along the endpoint
c.fault)5. Once message (2) is received, the consumer calculates the derived key by
exploiting its internal hashing function (using operation hashReq and hashResp) and,
similarly, decrypts the challenge (using operation decReq and decResp). Then, pattern-
matching and the choice operator are used again to check the presence of the STS’s
identity within the challenge. Now, the consumer can prepare the response for STS, by

4 The string -- indicates that the rest of the line is a comment (and is ignored by CMC).
5 Notice that if both receives along c.rstrmatch an incoming message, hence the first argument

is sts, due to the prioritized semantics of COWS only the second receive (which generates a
smaller substitution) can progress.

9

encrypting the challenge data, where the nonce has been incremented by 1 (this is rep-
resented by the couple Nonce, 1). Differently from the abstract description of message
(3) shown in Table 1, the COWS specification follows the concrete approach used in
the implementation (based on XML encryption): thus, the AES algorithm is used to
encrypt the data rather than RSA. The used symmetric key gen key, supposed to be
calculated by the consumer, is in its turn encrypted with RSA by using the STS’s public
key and attached to the message. Finally, when the message containing the token arrives
(receive along c.rstrc), the consumer invokes the storedQuery operation (the XDS
feature for querying Susan’s documents) provided by the registry.

The term representing the STS behaviour is

* [C] [MsgId1] [User] [Salt] [Iteration] [Timestamp1] [URI] [RST]

sts.rst?<C,MsgId1,sts,User,Salt,Iteration,Timestamp1,URI,RST>.

(-- Retrieve the User’s password

sts.getPwd!<User>| [Pwd] sts.getPwdResp?<User,Pwd>.

(-- Calculate the derived key

sts.hashReq!<Pwd,Salt,Iteration>

| [DKey] sts.hashResp?<Pwd,Salt,Iteration,DKey>.

(-- Create the challenge

sts.encReq!<DKey,sts,nonce1,created1,contextId>

| [Challenge] sts.encResp?<DKey,sts,nonce1,created1,contextId,Challenge>.

(-- Send the challenge to the consumer

C.rstr!<sts,C,msgId2,MsgId1,Challenge>

| -- Receive the challenge response

[MsgId3] [Timestamp2] [EncKey] [EncData]

sts.rstrr?<MsgId3,msgId2,sts,Timestamp2,EncKey,EncData>.

(-- Decrypt the encoded key

sts.decReq!<stsPrivateKey,EncKey>

| [Gen_key] sts.decResp?<stsPrivateKey,EncKey,Gen_key>.

(-- Decrypt the encoded data

sts.decReq!<Gen_key,EncData>

| [MsgId3] sts.decResp?<Gen_key,EncData,nonce1,1,C,MsgId3,

msgId2,contextId>.

-- Now, the consumer is authenticated

(-- Create a token SAML

sts.hashReq!<sts,samlTimestamp,User,URI>

| [SAMLhash] sts.hashResp?<sts,samlTimestamp,User,URI,SAMLhash>.

(-- Sign the hash code

sts.sign!<stsPrivateKey,SAMLhash>

| [Signature] sts.signResp?<SAMLhash,Signature>.

(-- Send the token

C.rstrc!<C,sts,MsgId3,msgId4,samlTimestamp,

User,URI,Signature>)))))))))

The replication operator ∗ at the beginning of the term specifies that STS is a persistent
service, i.e. it is capable of creating multiple instances to serve several requests simulta-
neously. Thus, when it receives a message along the endpoint sts.rst, corresponding
to message (1) of the protocol, it creates an instance initialized with the received data.
The instance, by means of operations getPwd and getPwdResp, retrieves the user’s
password from a private database. Using the password, it can derive a symmetric key to
encrypt the challenge, by exploiting again its internal functions. Invoke along C.rstr
and the subsequent receive along sts.rstrr permit sending and receiving message (2)
and (3), respectively. Now, by using stsPrivateKey, STS can decipher the symmetric
key generated by the consumer, which is then used to decrypt the challenge response.

10

Notice that, pattern-matching in the communication along sts.decResp permits check-
ing that the response contains the incremented nonce and the context; this guarantees
that the sender of the message is really the consumer acting on behalf of the authorized
user. Therefore, STS creates the token, by exploiting its internal functions, and sends it
to the consumer.

Finally, the term representing the registry’s behaviour is

* [Cust] [STS] [MsgId5] [TS] [User] [Uri] [Signature]

reg.storedQuery?<Cust,reg,STS,MsgId5,TS,User,Uri,Signature,"Susan">.

-- Validate the token

(-- Calculate the hash code of the token data

reg.hashReq!<STS,TS,User,Uri>

| [CalculatedHash] reg.hashResp?<STS,TS,User,Uri,CalculatedHash>.

(-- Retrieve the STS’s public key

reg.getKey!<STS>

| [PubKey] reg.getKeyResp?<STS,PubKey>.

(-- Check the signature by using PubKey

reg.check!<PubKey,Signature>

| [Hash] reg.checkResp?<Signature,Hash>.

[compare]]
(-- Compare the hash codes

reg.compare!<CalculatedHash>

| [X] (reg.compare?<X>. reg.attackDetected!<Cust>

+ reg.compare?<Hash>. reg.deliveringResource!<Cust>)))))

When the registry receives a consumer’s query, by means of the receive activity
along the endpoint reg.storedQuery, it validates the token within the message. To
this purpose, we assume that the registry has a private database storing the public
keys of all trusted STSs, and can interact with it by calling the operations getKey
and getKeyResp. Instead, to check the validity of the signature, it calls function
signChecker by means of check and checkResp. After calling such function, the reg-
istry obtains the hash code of the signature (and stores it in the variable Hash); by com-
paring it with the re-calculated hash code (stored in the variable CalculatedHash) us-
ing the private operation compare, it can either detect that an attack has been performed
(this is signaled by the activity reg.deliveringResource! < Cust >) or state that the
token is valid. In this last case, the activity reg.deliveringResource! < Cust > is
used to signal that the registry is ready to deliver the resource to the consumer. In fact,
we do not model here message (6), since the flaw we are interested to capture concerns
the previous message exchanges.

4 Protocol analysis

As shown in Figure 3 we have to deal with two types of communication channels: TLS
protected channels for communicating with the registry and untrusted channels for com-
municating with the STS. We assume the intruder as any authorized user in the network
(i.e. it owns an ATNA host certificate). Therefore, it can start any mutual authenticated
TLS transaction with the registry and it can look in any message exchanged by STS.
Basically, we consider the intruder model introduced by [25] for TLS channels and
the well-known Dolev-Yao model [26] as regards the communication with STS along
untrusted channels. We focus on an intruder that intercepts the message sent by STS

11

containing the SAML token issued for the consumer (message (4)) and re-uses the to-
ken (without modifying it) for an its own query to the registry (message (5), sent by the
intruder). This is rendered in COWS as

Intruder(i, c, sts, user, uri, reg) =

[MsgId4] [TS] [Signature]

c.rstrc?<c,sts,msgId3,MsgId4,TS,user,uri,Signature> .

(i.underAttack!<>

| --Forwards the message to the consumer

c.rstrc!<c,sts,msgId3,MsgId4,TS,user,uri,Signature>

| --Performs the attack

reg.storedQuery!<i,reg,sts,msgId5,TS,user,uri,Signature,"Susan">)

Once the intruder has caught message (4) (receive activity along c.rstrc), besides
forwarding the message to the consumer and querying the registry, it enables the invoke
activity i.underAttack! <>. This activity is only used during the analysis to signal that
the system is under attack. Notably, the intruder’s query differs from the consumer’s one
for the first argument only, which is i instead of c.

The analysis of the protocol is carried out by exploiting CMC [23], a software tool
that permits model checking SocL formulae over COWS specifications. SocL [27] is an
action- and state-based, branching time, temporal logic specifically designed to express
properties of service-oriented systems. Here, we are interested to look for the presence
of security flaws in the protocol, which can be expressed in SocL as follows:

AG [request(samlToken,requestedBy,c)]

not EF (systemUnderAttack(i) and deliveringResource(to,i))

This formula means that it holds globally (operator AG) that if (operator [·]) a
SAML token has been requested by the consumer (action request(samlToken,
requestedBy, c)), then it does not (operator not) hold that eventually (operator EF)
the system will be under attack by intruder i (predicate systemUnderAttack(i))
and, at the same time, the registry will deliver the resource to i (predicate
deliveringResource(to, i)).

The previous formula is stated in terms of abstract actions and predicates, meaning
that, e.g., a token is requested or a resource is ready to be delivered, while the COWS
specification is stated in terms of concrete actions, i.e. communication of data tuples
along endpoints. To verify an abstract property over a concrete specification, CMC per-
mits to specify a set of transformation rules, such as

Action ∗.rst<$requestor,∗,∗,∗,∗,∗,∗,∗,∗>

−> request(samlToken,requestedBy,$requestor)

State $attacker.underAttack! −> systemUnderAttack($attacker)

State ∗.deliveringResource! <$X> −> deliveringResource(to, $X)

The first rule maps a concrete action involving the operation rst to the abstract
action request(samlToken, requestedBy, $requestor), where the (meta-)variable
$requestor will be replaced with the actual requestor during the on-the-fly model
checking process, while the symbol ∗ is a wildcard. Similarly, the second and third rules
map the actions involving operations underAttack and deliveringResource to the
corresponding state predicates. We refer the interested reader to [27] for a complete
account of abstraction rules.

12

As already mentioned in the Introduction, CMC returns FALSE when checking the
above SocL formula over the abstracted COWS specification. In fact, the system can
perform the following sequence of (abstract) actions:

request(samlToken,requestedBy,c); internal actions; challenge(samlToken);
internal actions; challengeResp(samlToken); internal actions;
response(samlToken,requestedBy,c);

request(registryQuery,requestedBy,i); internal actions

and reach a state where both predicates systemUnderAttack(i) and delivering-
Resource(to, i) hold.

Now, let us modify the COWS specification to model the use of the holder-
of-key confirmation method rather than the bearer method. With respect to the
specification presented in Section 3, the main difference is that in the new
STS specification the invoke sts.hashReq! < sts, samlTimestamp, User, URI >,
used to generate the hash code of the SAML token data, is replaced with
sts.hashReq! < sts, samlTimestamp, User, C, URI >. This time the result returned
by CMC when checking the previous formula over the protocol specification is TRUE.
In fact, the registry can detect that the intruder’s query is fake by comparing the in-
truder’s identity with the identity contained in the SAML token by means of ATNA
credentials.

5 Concluding remarks

We have presented a formal model and analysis of a Web Service security protocol, for
obtaining a XUA SAML authentication assertion, using the WS-Trust OASIS standard.
To the best of our knowledge, our work is the first tentative to provide a formal study
for IHE specifications. This kind of protocols are obtaining an ever increasing relevance
since they are used to exchange patients’ healthcare data and are widely adopted.

We have revealed a potential flaw in the specification and we have also pro-
posed a solution. Afterwards, we have implemented the ‘revised’ protocol using WS-
Trust 1.3, SAML 2.0, WS-Security and the WS-Security Username Token Profile
1.1. We have also used the Axis2 library (available at http://ws.apache.org/axis2) and
the JBoss application server (http://www.jboss.org). Our Java implementation con-
sists of four services: the Document Consumer and Document Registry, a Docu-
ment Repository and a Security Token Service. All the XDS services are given as a
courtesy of the Tiani “Spirit” company located in Vienna, Austria (http://www.tiani-
spirit.com). The modified STS is available as Axis2 service at http://office.tiani-
spirit.com:41081/SpiritIdentityProvider/services/STS09. A more detailed account of
the implementation together with the COWS sources can be found in [17].

Related work. Microsoft Research proposes the TulaFale specification lan-
guage [10, 9] for security analysis of web services. TulaFale uses CryptoVerif [28] as
model checking engine. The main focus is on SOAP Message Rewrite attacks that we
do not consider in our work since our signatures are defined by the SAML standard.
In [10] the authors analyze WS-Trust for a secure exchange of a Security Context To-
ken (SCT) while we consider WS-Trust for issuing a SAML token.

13

The SAML 1.0 and 2.0 specifications have been studied e.g. in [12, 29, 30]. How-
ever, they concentrate on the SAML Protocol and Profiles [31] to obtain SAML Au-
thentication assertion, while we focus on WS-Trust. The work closest to ours is [12]
where the SAML-based Single Sign-On for Google Apps is analyzed with the AVISPA
[32] tool. A flaw in the Google implementation is found, where a fake Service Provider
can potentially access a Google resource without the password of the user. Similarly to
our scenario, the flaw discovered is in the format of the SAML assertion, that lacks the
Audience list. In XUA, the Audience list must be contained in the assertion and refer
to the registry, hence this kind of attack cannot occur.

Future work. As the above mentioned works and ours witness, to simply adopt
WS-Security and WS-Trust does not guarantee absence of security flaws. Due to the
widespread diffusion of such standards, especially in EHR, it is then worthwhile pursu-
ing this line of research. Therefore, in the near future we plan to study the correctness
of IHE security protocols for authentication and authorization, such as CCOW [33] and
Patient Identifier Cross Referencing (PIX) [1].

References

1. The IHE Initiative: IT Infrastructure Technical Framework (2009) http://www.ihe.net.
2. OASIS Security Services TC: Assertions and protocols for the OASIS security assertion

markup language (SAML) v2.02 (2005) http://docs.oasis-open.org/security/saml/v2.0/saml-
core-2.0-os.pdf.

3. OASIS/ebXML Registry Technical Committee: ebXML business process specification
schema technical specification v2.0.4 (2006) http://www.ebxml.org.

4. OASIS Web Services Security TC: WS-Trust 1.3 (2007) http://docs.oasis-open.org/ws-
sx/ws-trust/200512/ws-trust-1.3-os.pdf.

5. GIP DMP: Dossier Médical Personnel A French Project, http://www.d-m-p.org.
6. ARGE-ELGA: Die österreich elektronische gesundheitsakte http://www.arge-elga.at.
7. Dierks, T., Rescorla, E.: The Transport Layer Security (TLS) Protocol Version 1.2. Technical

Report RFC 5246, IETF (August 2008)
8. OASIS Web Services Security TC: Web service security: SOAP message secu-

rity (2006) http://www.oasis-open.org/committees/download.php/16790/wss-v1.1-spec-os-
SOAPMessageSecurity.pdf.

9. Bhargavan, K., Fournet, C., Gordon, A., Pucella, R.: Tulafale: A security tool for web ser-
vices. CoRR abs/cs/0412044 (2004)

10. Bhargavan, K., Corin, R., Fournet, C., Gordon, A.: Secure sessions for web services. In:
SWS, ACM (2004) 56–66

11. Kleiner, E., Roscoe, A.W.: On the relationship between web services security and traditional
protocols. In: Mathematical Foundations of Programming Semantics (MFPS XXI. (2005)

12. Armando, A., Carbone, R., Compagna, L., Cuellar, J., Abad, L.T.: Formal Analysis of SAML
2.0 Web Browser Single Sign-On: Breaking the SAML-based Single Sign-On for Google
Apps. In: the 6th ACM Workshop on Formal Methods in Security Engineering (FMSE
2008), Hilton Alexandria Mark Center, Virginia, USA, ACM Press (2008)

13. Lowe, G.: A hierarchy of authentication specifications, IEEE Computer Society Press (1997)
31–43

14. ACR-NEMA: Digital imaging and communications in medicine (dicom) (1995)
15. Health Level Seven organization: Hl7 standards (2009) http://www.hl7.org.

14

16. Lapadula, A., Pugliese, R., Tiezzi, F.: A Calculus for Orchestration of Web Services. In:
ESOP. Volume 4421 of LNCS., Springer (2007) 33–47

17. Masi, M., Pugliese, R., Tiezzi, F.: On secure implementation of an IHE XUA-
based protocol for authenticating healthcare professionals (full version). Available at
http://rap.dsi.unifi.it/cows/.

18. OASIS Security Services TC: SAML V2.0 Holder-of-Key Assertion Profile (March 2009)
http://docs.oasis-open.org/security/saml/Post2.0/sstc-saml2-holder-of-key-cd-01.pdf.

19. Gudgin, M., Hadley, M., Rogers, T.: Web Services Addressing 1.0 - Core. Technical report,
W3C (May 2006) W3C Recommendation.

20. OASIS Web Services Security TC: Username token profile v1.1 (2006) http://www.oasis-
open.org/committees/download.php/16782/wss-v1.1-spec-os-UsernameTokenProfile.pdf.

21. Lapadula, A., Pugliese, R., Tiezzi, F.: A Calculus for Orchestration of Web Services (full
version). Technical report, Dipartimento di Sistemi e Informatica, Univ. Firenze (2008)
http://rap.dsi.unifi.it/cows.

22. OASIS WSBPEL TC: Web Services Business Process Execution Language Version 2.0.
(2007) http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html.

23. ter Beek, M., Gnesi, S., Mazzanti, F.: CMC-UMC: A framework for the verification of
abstract service-oriented properties. In: SAC, ACM (2009) To appear.

24. Abadi, M., Fournet, C.: Mobile values, new names, and secure communication. In: POPL.
(2001) 104–115

25. Broadfoot, P., Lowe, G.: On distributed security transactions that use secure transport proto-
cols. Computer Security Foundations Workshop, IEEE 0 (2003) 141

26. Dolev, D., Yao, A.: On the security of public key protocols. Information Theory, IEEE
Transactions on 29(2) (1983) 198–208

27. Fantechi, A., Gnesi, S., Lapadula, A., Mazzanti, F., Pugliese, R., Tiezzi, F.: A model checking
approach for verifying COWS specifications. In: FASE. Volume 4961 of LNCS., Springer
(2008) 230–245

28. Blanchet, B.: CryptoVerif: : Computationally sound mechanized prover for cryptographic
protocols. In: Dagstuhl seminar ”Formal Protocol Verification Applied”. (October 2007)

29. Groß, T.: Security analysis of the saml single sign-on browser/artifact profile. In: ACSAC,
IEEE Computer Society (2003) 298–307

30. Hansen, S., Skriver, J., Nielson, H.: Using static analysis to validate the saml single sign-on
protocol. In: WITS, ACM (2005) 27–40

31. OASIS Security Services TC: Profiles for the OASIS Security Assertion Markup Language
(SAML) V2.0 (2005) http://docs.oasis-open.org/security/saml/v2.0/saml-profiles-2.0-os.pdf.

32. Armando, A., Basin, D., Boichut, Y., Chevalier, Y., Compagna, L., Cuellar, J., Drielsma,
P.H., Heám, P.C., Kouchnarenko, O., Mantovani, J., Mödersheim, S., von Oheimb, D., Rusi-
nowitch, M., Santiago, J., Turuani, M., Viganò, L., Vigneron, L.: The avispa tool for the
automated validation of internet security protocols and applications. In: Proceedings of
CAV’2005. LNCS 3576. Springer-Verlag (2005) 281–285

33. Hl7: Clinical context object workgroup, ccow (2001) http://www.hl7.org.au/CCOW.htm.

15

