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Abstract. We introduce COWS (Calculus for Orchestration of Web Services),
a new foundational language for SOC whose design has been influenced by
WS-BPEL, the de facto standard language for orchestration of web services.
COWS combines in an original way a number of ingredients borrowed from well-
known process calculi, e.g. asynchronous communication, polyadic synchroniza-
tion, pattern matching, protection, delimited receiving and killing activities, while
resulting different from any of them. Several examples illustrates COWS peculiar-
ities and show its expressiveness both for modelling imperative and orchestration
constructs, e.g. web services, flow graphs, fault and compensation handlers, and
for encoding other process and orchestration languages.

1 Introduction

Web services are a successful instantiation of service-oriented computing (SOC), an
emerging paradigm for developing loosely coupled, interoperable, evolvable systems
and applications which exploits the pervasiveness of the Internet and its related tech-
nologies. Web services are autonomous, stateless, platform-independent and compos-
able computational entities that can be published, located and invoked through the Web
via XML messages. These very features foster a programming style based on service
composition and reusability: new customized service-based applications can be devel-
oped on demand by appropriately assembling other existing, heterogeneous services.

Service definitions are used as templates for creating service instances that deliver
application functionality to either end-user applications or other instances. The loosely
coupled nature of SOC implies that the connection between communicating instances
cannot be assumed to persist for the duration of a whole business activity. Therefore,
there is no intrinsic mechanism for associating messages exchanged under a common
context or as part of a common activity. Even the execution of a simple request-response
message exchange pattern provides no built-in means of automatically associating the
response message with the original request. It is up to each single message to provide
a form of context thus enabling services to associate the message with others. This
is achieved by embedding values in the message which, once located, can be used to
correlate the message with others logically forming a same stateful interaction ‘session’.

To support the web service approach, many new languages, most of which based
on XML, have been designed, like e.g. business coordination languages (such as WS-
BPEL, WSFL, WSCI, WS-CDL and XLANG), contract languages (such as WSDL and
SWS), and query languages (such as XPath and XQuery). However, current software
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engineering technologies for development and composition of web services remain at
the descriptive level and do not integrate such techniques as, e.g., those developed for
component-based software development. Formal reasoning mechanisms and analytical
tools are still lacking for checking that the web services resulting from a composition
meet desirable correctness properties and do not manifest unexpected behaviors. The
task of developing such verification methods is hindered also by the very nature of
the languages used to program the services, which usually provide many redundant
constructs and support quite liberal programming styles.

Recently, many researchers have exploited the studies on process calculi as a start-
ing point to define a clean semantic model and lay rigorous methodological foundations
for service-based applications and their composition. Process calculi, being defined al-
gebraically, are inherently compositional and, therefore, convey in a distilled form the
paradigm at the heart of SOC. This trend is witnessed by the many process calculi-like
formalisms for orchestration and choreography, the two more common forms of web
services composition. Most of these formalisms, however, do not suit for the analysis
of currently available SOC technologies in their completeness because they only con-
sider a few specific features separately, possibly by embedding ad hoc constructs within
some well-studied process calculus (see, e.g., the variants of π-calculus with transac-
tions [2, 19, 20] and of CSP with compensation [9]).

Here, we follow a different approach and exploit WS-BPEL [1], the de facto stan-
dard language for orchestration of web services, to drive the design of a new process
calculus that we call COWS (Calculus for Orchestration of Web Services). Similarly to
WS-BPEL, COWS supports shared states among service instances, allows a same pro-
cess to play more than one partner role and permits programming stateful sessions by
correlating different service interactions. However, COWS intends to be a foundational
model not specifically tight to web services’ current technology. Thus, some WS-BPEL
constructs, such as e.g. fault and compensation handlers and flow graphs, do not have
a precise counterpart in COWS, rather they are expressed in terms of more primitive
operators (see Section 3). Of course, COWS has taken advantage of previous work on
process calculi. Its design combines in an original way a number of constructs and fea-
tures borrowed from well-known process calculi, e.g. asynchronous communication,
polyadic synchronization, pattern matching, protection, delimited receiving and killing
activities, while however resulting different from any of them.

The rest of the paper is organized as follows. Syntax and operational semantics
of COWS are defined in Section 2 where we also show many illustrative examples.
Section 3 presents the encodings of several imperative and orchestration constructs,
while Section 4 presents the encoding of the orchestration language Orc [28]. Finally,
Section 5 touches upon comparisons with related work and directions for future work.

2 COWS: Calculus for Orchestration of Web Services

The basic elements of COWS are partners and operations. Alike channels in [10], a
communication endpoint is not atomic but results from the composition of a partner
name p and of an operation name o, which can also be interpreted as a specific imple-
mentation of o provided by p. This results in a very flexible naming mechanism that



allows a same service to be identified by means of different logic names (i.e. to play
more than one partner role as in WS-BPEL). Additionally, it allows the names compos-
ing an endpoint to be dealt with separately, as in a request-response interaction, where
usually the service provider knows the name of the response operation, but not the part-
ner name of the service it has to reply to. This mechanisms is also sufficiently expressive
to support implementation of explicit locations: a located service can be represented by
using a same partner for all its receiving endpoints. Partner and operation names can be
exchanged in communication, thus enabling many different interaction patterns among
service instances. However, as in [25], dynamically received names cannot form the
communication endpoints used to receive further invocations.

COWS computational entities are called services. Typically, a service creates one
specific instance to serve each received request. An instance is composed of concurrent
threads that may offer a choice among alternative receive activities. Services could be
able to receive multiple messages in a statically unpredictable order and in such a way
that the first incoming message triggers creation of a service instance which subsequent
messages are routed to. Pattern-matching is the mechanism for correlating messages
logically forming a same interaction ‘session’ by means of their same contents. It per-
mits locating those data that are important to identify service instances for the routing of
messages and is flexible enough for allowing a single message to participate in multiple
interaction sessions, each identified by separate correlation values.

To model and update the shared state of concurrent threads within each service
instance, receive activities in COWS bind neither names nor variables. This is different
from most process calculi and somewhat similar to [29, 30]. In COWS, however, inter-
service communication give rise to substitutions of variables with values (alike [29]),
rather than to fusions of names (as in [30]). The range of application of the substitution
generated by a communication is regulated by the delimitation operator, that is the only
binder of the calculus. Additionally, this operator permits to generate fresh names (as
the restriction operator of the π-calculus [27]) and to delimit the field of action of the
kill activity, that can be used to force termination of whole service instances. Sensitive
code can however be protected from the effect of a forced termination by using the
protection operator (inspired by [8]).

Syntax. The syntax of COWS, given in Table 1, is parameterized by three countable
and pairwise disjoint sets: the set of (killer) labels (ranged over by k, k′, . . .), the set of
values (ranged over by v, v′, . . . ) and the set of ‘write once’ variables (ranged over by x,
y, . . . ). The set of values is left unspecified; however, we assume that it includes the set
of names, ranged over by n, m, . . . , mainly used to represent partners and operations.
The language is also parameterized by a set of expressions, ranged over by e, whose
exact syntax is deliberately omitted; we just assume that expressions contain, at least,
values and variables. Notably, killer labels are not (communicable) values. Notationally,
we prefer letters p, p′, . . .when we want to stress the use of a name as a partner, o, o′, . . .
when we want to stress the use of a name as an operation. We will use w to range over
values and variables, u to range over names and variables, and d to range over killer
labels, names and variables.

Services are structured activities built from basic activities, i.e. the empty activity 0,
the kill activity kill( ) , the invoke activity · ! and the receive activity · ? , by means



s ::= kill(k) | u · u′!ē | g | s | s | {|s|} | [d] s | ∗ s (services)

g ::= 0 | p · o?w̄.s | g + g (input-guarded choice)

Table 1. COWS syntax

∗ 0 ≡ 0 ∗ s ≡ s | ∗ s {|0|} ≡ 0
{| {|s|} |} ≡ {|s|} {|[d] s|} ≡ [d] {|s|} [d] 0 ≡ 0

[d1] [d2] s ≡ [d2] [d1] s s1 | [d] s2 ≡ [d] (s1 | s2) if d < fd(s1)∪fk(s2)

Table 2. COWS structural congruence (excerpt of laws)

of prefixing . , choice + , parallel composition | , protection {| |} , delimitation
[ ] and replication ∗ . Notably, as in the Lπ [25], communication endpoints of receive
activities are identified statically because their syntax only allows using names and
not variables. The decreasing order of precedence among the operators is as follows:
monadic operators, choice and parallel composition.

Notation ·̄ stands for tuples of objects, e.g. x̄ is a compact notation for denoting the
tuple of variables 〈x1, . . . , xn〉 (with n ≥ 0). We assume that variables in the same tuple
are pairwise distinct. All notations shall extend to tuples component-wise. In the sequel,
we shall omit trailing occurrences of 0, writing e.g. p · o?w̄ instead of p · o?w̄.0, and use
[d1, . . . , dn] s in place of [d1] . . . [dn] s.

The only binding construct is delimitation: [d] s binds d in the scope s. The occur-
rence of a name/variable/label is free if it is not under the scope of a binder. We denote
by fd(t) the set of names, variables and killer labels that occur free in a term t, and by
fk(t) the set of free killer labels in t. Two terms are alpha-equivalent if one can be ob-
tained from the other by consistently renaming bound names/variables/labels. As usual,
we identify terms up to alpha-equivalence.

Operational Semantics. COWS operational semantics is defined only for closed ser-
vices, i.e. services without free variables/labels (similarly to many real compilers, we
consider terms with free variables/labels as programming errors), but of course the rules
also involve non-closed services (see e.g. the premises of rules (del )). Formally, the se-
mantics is given in terms of a structural congruence and of a labelled transition relation.

The structural congruence ≡ identifies syntactically different services that intuitively
represent the same service. It is defined as the least congruence relation induced by a
given set of equational laws. We explicitly show in Table 2 the laws for replication,
protection and delimitation, while omit the (standard) laws for the other operators stat-
ing that parallel composition is commutative, associative and has 0 as identity element,
and that guarded choice enjoys the same properties and, additionally, is idempotent.
All the presented laws are straightforward. In particular, commutativity of consecutive
delimitations implies that the order among the di in [〈d1, . . . , dn〉] s is irrelevant, thus in
the sequel we may use the simpler notation [d1, . . . , dn] s. Notably, the last law can be
used to extend the scope of names (like a similar law in the π-calculus), thus enabling
communication of restricted names, except when the argument d of the delimitation is
a free killer label of s2 (this avoids involving s1 in the effect of a kill activity inside s2).



M(x, v) = {x 7→ v} M(v, v) = ∅
M(w1, v1) = σ1 M(w̄2, v̄2) = σ2

M((w1, w̄2), (v1, v̄2)) = σ1 ] σ2

Table 3. Matching rules

To define the labelled transition relation, we need a few auxiliary functions. First,
we exploit a function [[ ]] for evaluating closed expressions (i.e. expressions without
variables): it takes a closed expression and returns a value. However, [[ ]] cannot be
explicitly defined because the exact syntax of expressions is deliberately not specified.

Then, through the rules in Table 3, we define the partial functionM( , ) that per-
mits performing pattern-matching on semi-structured data thus determining if a receive
and an invoke over the same endpoint can synchronize. The rules state that two tuples
match if they have the same number of fields and corresponding fields have matching
values/variables. Variables match any value, and two values match only if they are iden-
tical. When tuples w̄ and v̄ do match,M(w̄, v̄) returns a substitution for the variables in
w̄; otherwise, it is undefined. Substitutions (ranged over by σ) are functions mapping
variables to values and are written as collections of pairs of the form x 7→ v. Application
of substitution σ to s, written s · σ, has the effect of replacing every free occurrence of
x in s with v, for each x 7→ v ∈ σ, by possibly using alpha conversion for avoiding v to
be captured by name delimitations within s. We use |σ | to denote the number of pairs
in σ and σ1 ] σ2 to denote the union of σ1 and σ2 when they have disjoint domains.

We also define a function, named halt( ), that takes a service s as an argument and
returns the service obtained by only retaining the protected activities inside s. halt( ) is
defined inductively on the syntax of services. The most significant case is halt({|s|}) =

{|s|}. In the other cases, halt( ) returns 0, except for parallel composition, delimitation
and replication operators, for which it acts as an homomorphism.

Finally, we define a predicate, noc( , , , ), that takes a service s, an endpoint p · o,
a tuple of receive parameters w̄ and a matching tuple of values v̄ as arguments and holds
true if either there are no conflicting receives within s (namely, s cannot immediately
perform a receive activity matching v̄ over the endpoint p · o), or p · o?w̄ is the most
defined conflicting receive. The predicate exploits the notion of active context, namely
a service A with a ‘hole’ [[·]] such that, once the hole is filled with a service s, if the
resulting term A[[s]] is a COWS service then it is capable of immediately performing an
activity of s. Formally, active contexts are generated by the grammar:

A ::= [[·]] | A + g | g + A | A | s | s | A | {|A|} | [d]A | ∗ A
Now, predicate noc(s, p · o, w̄, v̄) can be defined as follows:

( s = A[[p · o?w̄′.s′]] ∧ M(w̄′, v̄) = σ ) ⇒ |M(w̄, v̄) |6 |σ |
where s = A[[p · o?w̄′.s′]] means that s can be written as p · o?w̄′.s′ filling the hole of
some active context A.

The labelled transition relation
α−−→ is the least relation over services induced by the

rules in Table 4, where label α is generated by the following grammar:

α ::= †k | (p · o) C v̄ | (p · o) B w̄ | p · o bσc w̄ v̄ | †



kill(k)
†k−−→ 0 (kill) p · o?w̄.s

(p·o)Bw̄−−−−−−→ s (rec)

[[ē]] = v̄
(inv)

p · o!ē
(p·o)Cv̄−−−−−−→ 0

g1
α−−→ s

(choice)
g1 + g2

α−−→ s

s
p·o bσ]{x 7→v′}c w̄ v̄−−−−−−−−−−−−−→ s′

(delsub)
[x] s

p·o bσc w̄ v̄−−−−−−−−→ s′ ·{x 7→ v′}

s
†k−−→ s′

(delkill)
[k] s

†−→ [k] s′

s
α−−→ s′ d<d(α) s = A[[kill(d)]]⇒ α=†, †k

(delpass)
[d] s

α−−→ [d] s′

s
α−−→ s′

(prot)
{|s|} α−−→ {|s′|}

s1
(p·o)Bw̄−−−−−−→ s′1 s2

(p·o)Cv̄−−−−−−→ s′2 M(w̄, v̄) = σ noc(s1 | s2, p · o, w̄, v̄)
(com)

s1 | s2
p·o bσc w̄ v̄−−−−−−−−→ s′1 | s′2

s1
p·o bσc w̄ v̄−−−−−−−−→ s′1 noc(s2, p · o, w̄, v̄)

(parcon f )
s1 | s2

p·o bσc w̄ v̄−−−−−−−−→ s′1 | s2

s1
†k−−→ s′1

(parkill)
s1 | s2

†k−−→ s′1 | halt(s2)

s1
α−−→ s′1 α , (p · o bσc w̄ v̄), †k

(parpass)
s1 | s2

α−−→ s′1 | s2

s ≡ s1 s1
α−−→ s2 s2 ≡ s′

(cong)
s

α−−→ s′

Table 4. COWS operational semantics

In the sequel, we use d(α) to denote the set of names, variables and killer labels occur-
ring in α, except for α = p · o bσc w̄ v̄ for which we let d(p · o bσc w̄ v̄) = d(σ), where
d({x 7→ v}) = {x, v} and d(σ1]σ2) = d(σ1)∪d(σ2). The meaning of labels is as follows:
†k denotes execution of a request for terminating a term from within the delimitation
[k] , (p · o) C v̄ and (p · o) B w̄ denote execution of invoke and receive activities over the
endpoint p · o, respectively, p · o bσc w̄ v̄ (if σ , ∅) denotes execution of a communica-
tion over p · o with receive parameters w̄ and matching values v̄ and with substitution
σ to be still applied, † and p · o b∅c w̄ v̄ denote computational steps corresponding to
taking place of forced termination and communication (without pending substitutions),
respectively. Hence, a computation from a closed service s0 is a sequence of connected
transitions of the form

s0
α1−−→ s1

α2−−→ s2
α3−−→ s3 . . .

where, for each i, αi is either † or p · o b∅c w̄ v̄ (for some p, o, w̄ and v̄); services si, for
each i, will be called reducts of s0.

We comment on salient points. Activity kill(k) forces termination of all unprotected
parallel activities (rules (kill) and (parkill)) inside an enclosing [k] , that stops the killing
effect by turning the transition label †k into † (rule (delkill)). Existence of such delimita-
tion is ensured by the assumption that the semantics is only defined for closed services.



Sensitive code can be protected from killing by putting it into a protection {| |}; this way,
{|s|} behaves like s (rule (prot)). Similarly, [d] s behaves like s, except when the transition
label α contains d or when a kill activity for d is active in s and α does not correspond
to a kill activity (rule (delpass)): in such cases the transition should be derived by using
rules (delkill) or (delsub). In other words, kill activities are executed eagerly. A service
invocation can proceed only if the expressions in the argument can be evaluated (rule
(inv)). Receive activities can always proceed (rule (rec)) and can resolve choices (rule
(choice)). Communication can take place when two parallel services perform matching
receive and invoke activities (rule (com)). Communication generates a substitution that
is recorded in the transition label (for subsequent application), rather than a silent tran-
sition as in most process calculi. If more than one matching receive activity is ready to
process a given invoke, then only the more defined one (i.e. the receive that generates
the ‘smaller’ substitution) progresses (rules (com) and (parcon f )). This mechanism per-
mits to correlate different service communications thus implicitly creating interaction
sessions and can be exploited to model the precedence of a service instance over the
corresponding service specification when both can process the same request. When the
delimitation of a variable x argument of a receive is encountered, i.e. the whole scope
of the variable is determined, the delimitation is removed and the substitution for x is
applied to the term (rule (delsub)). Variable x disappears from the term and cannot be re-
assigned a value. Execution of parallel services is interleaved (rule (parpass)), but when a
kill activity or a communication is performed. Indeed, the former must trigger termina-
tion of all parallel services (according to rule (parkill)), while the latter must ensure that
the receive activity with greater priority progresses (rules (com) and (parcon f )). The last
rule states that structurally congruent services have the same transitions.

Examples. We end this section with a few observations and examples aimed at clarify-
ing the peculiarities of our formalism.
Communication of private names. Communication of private names is standard and
exploits scope extension as in π-calculus1. Receive and invoke activities can interact
only if both are in the scopes of the delimitations that bind the variables argument of
the receive. Thus, to enable communication of private names, besides their scopes, we
must possibly extend the scopes of some variables, as in the following example:

[x] (p · o?〈x〉.s | s′) | [n] p · o!〈n〉 ≡ (n fresh)

[n] [x] (p · o?〈x〉.s | s′ | p · o!〈n〉) p·o b∅c 〈x〉 〈n〉−−−−−−−−−−→
[n] (s | s′) · {x 7→ n}

Notice that the substitution {x 7→ n} is applied to all terms delimited by [x] , not only
to the continuation s of the service performing the receive. This accounts for the global
scope of variables and permits to easily model the delayed input of fusion calculus [30].
Protected kill activity. The following simple example illustrates the effect of executing
a kill activity within a protection block:

[k] ({|s1 | {|s2|} | kill(k)|} | s3) | s4
†−−→ [k] {| {|s2|} |} | s4

1 The variant of π-calculus closest to COWS is localised π-calculus [25] and, indeed, in [21] we
define an encoding that enjoys operational correspondence.



where, for simplicity, we assume that halt(s1) = halt(s3) = 0. In essence, kill(k) termi-
nates all parallel services inside delimitation [k] (i.e. s1 and s3), except those that are
protected at the same nesting level of the kill activity (i.e. s2).
Conflicting receive activities. This example shows a persistent service (implemented by
mean of replication), that, once instantiated, enables two conflicting receives:

∗ [x] ( p1 · o?〈x〉.s1 | p2 · o?〈x〉.s2 ) | p1 · o!〈v〉 | p2 · o!〈v〉 p1·o b∅c 〈x〉 〈v〉−−−−−−−−−−−→
∗ [x] ( p1 · o?〈x〉.s1 | p2 · o?〈x〉.s2 ) | s1 · {x 7→ v} | p2 · o?〈v〉.s2 · {x 7→ v} | p2 · o!〈v〉

Now, the persistent service and the created instance, being both able to receive the
same tuple 〈v〉 along the endpoint p2 ·o, compete for the request p2 ·o!〈v〉. However, our
(prioritized) semantics, in particular rule (com) in combination with rule (parcon f ), allows
only the existing instance to evolve (and, thus, prevents creation of a new instance):

∗ [x] ( p1 · o?〈x〉.s1 | p2 · o?〈x〉.s2 ) | s1 · {x 7→ v} | s2 · {x 7→ v}

Message correlation. Consider now uncorrelated receive activities executed by a same
instance, like in the following service:

∗ [x] p1 · o1?〈x〉.[y] p2 · o2?〈y〉.s
The fact that the messages for operations o1 and o2 are uncorrelated implies that, e.g., if
there are concurrent instances then successive invocations for a same instance can mix
up and be delivered to different instances. If one thinks it right, this behaviour can be
avoided simply by correlating successive messages by means of some correlation data,
e.g. the first received value as in the following service:

∗ [x] p1 · o1?〈x〉.[y] p2 · o2?〈y, x〉.s

3 Modelling imperative and orchestration constructs

In this section, we present the encoding of some higher level imperative and orchestra-
tion constructs (mainly inspired by WS-BPEL). The encodings illustrate flexibility of
COWS and somehow demonstrate expressiveness of the chosen set of primitives.

In the sequel, we will write Zv̄ , W to assign a symbolic name Zv̄ to the term W and
to indicate the values v̄ occurring within W. Thus, Zv̄ is a family of names, one for each
tuple of values v̄. We use n̂ to stand for the endpoint np · no. Sometimes, we write n̂ for
the tuple 〈np, no〉 and rely on the context to resolve any ambiguity.

Imperative constructs. Due to lack of space, we only present the encodings of those
constructs that will be further exploited in the rest of the section. We refer the interested
reader to [21] for deeper explanations and additional encodings.

We start adding matching with assignment [w̄ = ē] to COWS basic activities. If w̄
and ē do match, service [w̄ = ē].s returns a substitution that will eventually assign to
the variables in w̄ the corresponding values of ē, and service s can proceed. In COWS,
this meaning can be rendered through the following encoding (for m̂ fresh)

〈〈[w̄ = ē].s〉〉 = [m̂] (m̂!ē | m̂?w̄.〈〈s〉〉)



Notably, the new construct differs from standard assignment both because values can
occur on the left of =, in which case it behaves as a matching mechanism, and because,
like the receive activity, it does not bind the variables on the left of =, thus it cannot
reassign a value to them if a value has already been assigned (more details are in [21]).

Conditional choice is encoded similarly:

〈〈if (e) then {s1} else {s2}〉〉 = [m̂] (m̂!〈e〉 | (m̂?〈true〉.〈〈s1〉〉 + m̂?〈false〉.〈〈s2〉〉) )

where true and false are the values that can result from evaluation of e.
Sequential composition can be encoded alike in CCS [26, Chapter 8] however, due

to the asynchrony of invoke and kill activities, the notion of well-termination must
be relaxed wrt CCS. Firstly, we settle that services may indicate their termination by
exploiting the invoke activity xdone · odone!〈〉, where xdone is a distinguished variable and
odone is a distinguished name. Secondly, we say that a service s is well-terminating if,

for every reduct s′ of s and partner p, s′ · {xdone 7→ p} (p·odone)C〈〉−−−−−−−−−→ implies that

– either s′
α−−→ s′′ for some α = † or α = †k and s′′ is well-terminating

– or s′
α−−→ s′′ implies α = (p · o) C v̄, for some s′′, p, o and v̄.

Notably, well-termination does not demand a service to terminate, but only that when-
ever the service can perform activity p · odone!〈〉 and cannot perform any kill activities,
then it terminates except for, possibly, some parallel pending invoke activities. As usual,
the encoding relies on the assumption that all calculus operators themselves (in partic-
ular, parallel composition) can be rendered as to preserve well-termination. Finally, if
we only consider well-terminating services, then, for a fresh p, we can let:

〈〈s1; s2〉〉 = [p] (〈〈s1 · {xdone 7→ p}〉〉 | p · odone?〈〉.〈〈s2〉〉)

Fault and compensation handlers. Fault handling is strictly related to the notion of
compensation, namely the execution of specific activities (attempting) to reverse the
effects of previously executed activities. We consider here a minor variant of the WS-
BPEL compensation protocol. To begin with, we extend COWS syntax as shown in the
upper part of Table 5. The scope activity [s : catch(φ1){s1} : . . . : catch(φn){sn} : sc]ı
permits explicitly grouping activities together. The declaration of a scope activity con-
tains a unique scope identifier ı, a service s representing the normal behaviour, an op-
tional list of fault handlers, and a compensation handler sc. The fault generator activity
throw(φ) can be used by a service to rise a fault signal φ. This signal will trigger ex-
ecution of activity s′, if a construct of the form catch(φ){s′} exists within the same
scope. The compensate activity undo(ı) can be used to invoke a compensation handler
of an inner scope named ı that has already completed normally (i.e. without faulting).
Compensation can only be invoked from within a fault or a compensation handler. As
in WS-BPEL, we fix two syntactic constraints: handlers do not contain scope activities
and for each undo(ı) occurring in a service there exists at least an inner scope ı.

In fact, it is not necessary to extend COWS syntax because fault and compensation
handling can be easily encoded. The most interesting cases of the encoding are shown
in the lower part of Table 5 (in the remaining cases, the encoding acts as an homo-
morphism), where the killer labels used to identify scopes and the introduced partner



s ::= . . . (services)
| throw(φ) (fault generator)
| undo(ı) (compensate)
| [s : catch(φ1){s1} : . . . : catch(φn){sn} : sc]ı (scope)

〈〈[s : catch(φ1){s1} : . . . : catch(φn){sn} : sc]ı〉〉k =

[pφ1 , . . . , pφn ] ( 〈〈catch(φ1){s1}〉〉k | . . . | 〈〈catch(φn){sn}〉〉k |
[kı] ( 〈〈s〉〉kı ; ( xdone · odone!〈〉 | {|pı · ocomp?〈〉.〈〈sc〉〉kı |} ) ) )

〈〈catch(φ){s}〉〉k = pφ · o f ault?〈〉.[k′] 〈〈s〉〉k′

〈〈undo(ı)〉〉k = pı · ocomp!〈〉 | xdone · odone!〈〉

〈〈throw(φ)〉〉k = {|pφ · o f ault!〈〉 | xdone · odone!〈〉|} | kill(k)

Table 5. Syntax and encoding of fault and compensation handling

names are taken fresh for s, s1, . . . , sn and sc. The two distinguished names o f ault and
ocomp denote the operations for receiving fault and compensation signals, respectively.
We are assuming that for each scope identifier or fault signal named n, the partner used
to activate scope compensation or fault handling, respectively, is pn.

The encoding 〈〈·〉〉k is parameterized by the identifier k of the closest enclosing scope,
if any. The parameter is used when encoding a fault generator, to launch a kill activity
that forces termination of all the remaining activities of the enclosing scope, and when
encoding a scope, to delimit the field of action of inner kill activities. The compensation
handler sc of scope ı is installed when the normal behaviour s successfully completes,
but it is activated only when signal pı · ocomp!〈〉 occurs. Similarly, if during normal
execution a fault φ occurs, a signal pφ · o f ault!〈〉 triggers execution of the corresponding
fault handler (if any). Installed compensation handlers are protected from killing by
means of {| |}. Notably, both the compensate activity and the fault generator activity can
immediately terminate (thus enabling possible sequential compositions); this, of course,
does not mean that the corresponding handler is terminated.

Flow graphs. Flow graphs provide a direct and intuitive way to structure workflow
processes, where activities executed in parallel can be synchronized by settling depen-
dencies, called (flow) links, among them. At the beginning of a parallel execution, all
involved links are inactive and only those activities with no synchronization dependen-
cies can execute. Once all incoming links of an activity are active (i.e., they have been
assigned either a positive or negative state), a guard, called join condition, is evaluated.
When an activity terminates, the status of the outgoing links, which can be positive, neg-
ative or undefined, is determined through evaluation of a transition condition. When an
activity in the flow graph cannot execute (i.e., the join condition fails), a join failure
fault is emitted to signal that some activities have not completed. An attribute called
‘suppress join failure’ can be set to yes to ensure that join condition failures do not
throw the join failure fault (this effect is called Dead-Path Elimination [1]).

To express the constructs above, we extend the syntax of COWS as illustrated in the
upper part of Table 6. A flow graph activity [ f l] ls is a delimited linked service, where
the activities within ls can synchronize by means of the flow links in f l, rendered as



s ::= . . . | [ f l] ls | ∑
i∈I pi · oi?w̄i.si (services)

ls ::= ( jc)
s j f⇒ s⇒ ( f l, ē) | s⇒ ( f l, ē) | ls | ls (linked services)

jc ::= true | false | f l | ¬ jc | jc ∨ jc | jc ∧ jc (join conditions)

s j f ::= yes | no (supp. join failure)

〈〈[ f l] ls〉〉 = [ f l] 〈〈ls〉〉 〈〈ls1 | ls2〉〉 = 〈〈ls1〉〉 | 〈〈ls2〉〉 〈〈s⇒ ( f l, ē)〉〉 = 〈〈s〉〉; [ f l = ē]

〈〈( jc)
yes⇒ s⇒ ( f l, ē)〉〉 = if ( jc) then {〈〈s〉〉; [ f l = ē]} else {[outLinkO f (s) = false]}

〈〈( jc)
no⇒ s⇒ ( f l, ē)〉〉 = if ( jc) then {〈〈s〉〉; [ f l = ē]} else {throw(φ join f )}

〈〈∑i∈{1..n} pi · oi?w̄i.si〉〉 = p1 · o1?w̄1.[
⋃

j∈{2..n} outLinkO f (s j) = false].〈〈s1〉〉
+ . . . + pn · on?w̄n.[

⋃
j∈{1..n−1} outLinkO f (s j) = false].〈〈sn〉〉

Table 6. Syntax and encoding of flow graphs

(boolean) variables. A linked service is a service equipped with a set of incoming flow
links that forms the join condition, and a set of outgoing flow links that represents the

transition condition. Incoming flow links and join condition are denoted by ( jc)
s j f⇒.

Outgoing links are represented by ⇒ ( f li∈I , ēi∈I) where each pair ( f li, ei) is composed
of a flow link f li and the corresponding transition (boolean) condition ei. Attribute s j f
permits suppressing possible join failures. Input-guarded summation replaces binary
choice, because we want all the branches of a multiple choice to be considered at once.

Again, we show that in fact it is not necessary to extend the syntax because flow
graphs can be easily encoded by relying on the capability of COWS of modelling a
state shared among a group of activities. The most interesting cases of the encoding
are shown in the lower part of Table 6. The encoding exploits the auxiliary function
outLinkO f (s), that returns the tuple of outgoing links in s. Flow graphs are rendered
as delimited services, while flow links are rendered as variables. A join condition is
encoded as a boolean condition within a conditional construct, where the transition
conditions are rendered as the assignment [ f l = ē]. In case attribute ‘suppress join
failure’ is set to no, a join condition failure produces a fault signal that can be caught
by a proper fault handler. Choice among (linked) services is implemented in such a way
that, when a branch is selected, the links outgoing from the activities of the discarded
branches are set to f alse (the encoding of conditional choice can be modified similarly).

4 Encoding the orchestration language Orc

We present here the encoding of Orc [28], a recently proposed task orchestration lan-
guage with applications in workflow, business process management, and web service
orchestration. Orc expressions are generated by the following grammar:

f , g ::= 0 | S (w) | E(w) | f > x > g | f | g | g where x :∈ f



where S ranges over site names, E over expression names, x over variables, and w over
parameters, i.e. variables or values (ranged over by v). Each expression name E has a
unique declaration of the form E(x) , f . Expressions f > x > g and g where x :∈ f
bind variable x in g.

We now briefly describe the semantics of Orc expressions (and refer the interested
reader to [21] for a formal account). Evaluation of expressions may call a number of
sites and returns a (possibly empty) stream of values. In [28], this is formalized through
a labelled transition relation, where label τ indicates an internal event while label !v
indicates publication of the value v resulting from evaluating an expression. A site call
can progress only when the actual parameter is a value; it elicits one response. While
site calls use a call-by-value mechanism, expression calls use a call-by-name mecha-
nism, namely the actual parameter replaces the formal one and then the corresponding
expression is evaluated. Symmetric parallel composition f | g consists of concurrent
evaluations of f and g. Sequential composition f > x > g activates a concurrent copy
of g with x replaced by v, for each value v returned by f . Asymmetric parallel com-
position g where x :∈ f starts in parallel both f and the part of g that does not need
x. The first value returned by f is assigned to x and the continuation of f and all its
descendants are then terminated.

The encoding of Orc expressions in COWS exploits function 〈〈·〉〉r̂ shown in Table 7.
The function is defined by induction on the syntax of expressions and is parameterized
by the communication endpoint r̂ used to return the result of expressions evaluation.
Thus, a site call is rendered as an invoke activity that sends a pair made of the parame-
ter of the invocation and the endpoint for the reply along the endpoint Ŝ corresponding
to site name S . Expression call is rendered similarly, but we need two invoke activi-
ties: Ê!〈r̂, r̂′〉 activates a new instance of the body of the declaration, while z!〈w〉 sends
the value of the actual parameter (when this value will be available) to the created in-
stance, by means of a private endpoint stored in z received from the encoding of the
corresponding expression declaration along the private endpoint r̂′ previously sent. Se-
quential composition is encoded as the parallel composition of the two components
sharing a delimited endpoint, where a new instance of the component on the right is
created every time that on the left returns a value along the shared endpoint. Symmet-
ric parallel composition is encoded as parallel composition, where the values produced
by the two components are sent along the same return endpoint. Finally, asymmetric
parallel composition is encoded in terms of parallel composition in such a way that,
whenever the encoding of f returns its first value, this is passed to the encoding of g
and a kill activity is enabled. Due to its eager semantics, the kill will terminate what
remains of the term corresponding to the encoding of f .

Moreover, for each site S , we define the service:

∗ [x, y] Ŝ ?〈x, y〉.y!〈eS
x 〉 (1)

that receives along the endpoint Ŝ a value (stored in x) and an endpoint (stored in y)
to be used to send back the result, and returns the evaluation of eS

x , an unspecified
expression corresponding to S and depending on x.

Similarly, for each expression declaration E(x) , f we define the service:

∗ [y, z] Ê?〈y, z〉.[r̂] (z!〈r̂〉 | [x] (r̂?〈x〉 | 〈〈 f 〉〉y) ) (2)



〈〈0〉〉r̂ = 0 〈〈S (w)〉〉r̂ = Ŝ !〈w, r̂〉 〈〈E(w)〉〉r̂ = [r̂′] (Ê!〈r̂, r̂′〉 | [z] r̂′?〈z〉.z!〈w〉)

〈〈 f > x > g〉〉r̂ = [r̂ f ] (〈〈 f 〉〉r̂ f | ∗ [x] r̂ f ?〈x〉.〈〈g〉〉r̂) 〈〈 f | g〉〉r̂ = 〈〈 f 〉〉r̂ | 〈〈g〉〉r̂

〈〈g where x :∈ f 〉〉r̂ = [r̂ f , x] ( 〈〈g〉〉r̂ | [k] ( 〈〈 f 〉〉r̂ f | r̂ f ?〈x〉.kill(k) ) )

Table 7. Orc encoding

Here, the received value (stored in x) is processed by the encoding of the body of the
declaration, that is activated as soon as the expression is called.

Finally, the encoding of an Orc expression f , written [[ f ]]r̂, is the parallel composi-
tion of 〈〈 f 〉〉r̂, of a service of the form (1) or (2) for each site or expression called in f ,
in any of the expressions called in f , and so on recursively.

In [21], we prove that there is a formal correspondence, based on the operational
semantics, between Orc expressions and the COWS services resulting from their en-
coding. This is another sign of COWS expressiveness because it is known that Orc can
express the most common workflow patterns identified in [31]. By letting s

α
==⇒ s′ to

mean that there exist two services, s1 and s2, such that s1 is a reduct of s, s1
α−−→ s2 and

s′ is a reduct of s2, the above property can be stated as follows

Theorem 1. Given an Orc expression f and an endpoint r̂, f
l
↪→ f ′ implies [[ f ]]r̂ ≡

〈〈 f 〉〉r̂ | s
α

==⇒ 〈〈 f ′〉〉r̂ | s, where α = r̂ C 〈v〉 if l = !v, and α = (p · o b∅c w̄ v̄) if l = τ.

The proof (see [21]) proceeds by induction on the length of the inference of f
l
↪→ f ′.

5 Concluding remarks

We have introduced COWS, a formalism for specifying and combining services, while
modelling their dynamic behaviour (i.e. it deals with service orchestration rather than
choreography). COWS borrows many constructs from well-known process calculi, e.g.
π-calculus, update calculus, StACi, and Lπ, but combines them in an original way, thus
being different from all existing calculi. COWS permits modelling different and typical
aspects of (web) services technologies, such as multiple start activities, receive con-
flicts, routing of correlated messages, service instances and interactions among them.

The correlation mechanism was first exploited in [32], that, however, only considers
interaction among different instances of a single business process. Instead, to connect
the interaction protocols of clients and of the respective service instances, the calculus
introduced in [3], and called SCC, relies on explicit modelling of sessions and their dy-
namic creation (that exploits the mechanism of private names of π-calculus). Interaction
sessions are not explicitly modelled in COWS, instead they can be identified by tracing
all those exchanged messages that are correlated each other through their same contents
(as in [14]). We believe that the mechanism based on correlation sets (also used by WS-
BPEL), that exploits business data and communication protocol headers to correlate
different interactions, is more robust and fits the loosely coupled world of Web Services



better than that based on explicit session references. Another notable difference with
SCC is that in COWS services are not necessarily persistent.

Many works put forward enrichments of some well-known process calculus with
constructs inspired by those of WS-BPEL. The most of them deal with issues of web
transactions such as interruptible processes, failure handlers and time. This is, for ex-
ample, the case of [19, 20, 23, 24] that present timed and untimed extensions of the
π-calculus, called webπ and webπ∞, tailored to study a simplified version of the scope
construct of WS-BPEL. Other proposals on the formalization of flow compensation are
[5, 4] that give a more compact and closer description of the Sagas mechanism [13] for
dealing with long running transactions.

We have focused on service orchestration rather than on service choreography. In
[6, 7] both aspects are studied. Other approaches are based on the use of schema lan-
guages [11] and Petri nets [15]. In [18] a sort of distributed input-guarded choice of
join patterns, called smooth orchestrators, gives a simple and effective representation
of synchronization constructs. The work closest to ours is [22], where - is
introduced to formalize the semantics of WS-BPEL. COWS represents a more founda-
tional formalism than - in that it does not rely on explicit notions of location
and state, it is more manageable (e.g. has a simpler operational semantics) and, at least,
equally expressive (as the encoding of - in COWS shows, [21]).

This paper has focussed on showing the descriptive power of COWS. We leave as a
future work the task of developing a formal account of its expressiveness. We also plan
to develop analytical tools, such as e.g. behavioural equivalences and type systems,
supporting services verification. Behavioural equivalences could provide a means to es-
tablish formal correspondences between different views (abstraction levels) of a service,
e.g. the contract it has to honour and its true implementation. Type systems, possibly
based on behavioural types (see e.g. [12, 16, 17]), could permit to express and enforce
policies of interest for (web) services for, e.g., disciplining resources usage, constrain-
ing the sequences of messages accepted by services, ensuring service interoperability
and compositionality, guaranteeing absence of deadlock in service composition, check-
ing that interaction obeys a given protocol.

Acknowledgements. We thank the anonymous referees for their useful comments.
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