
Regulating data exchange in service oriented
applications?

Alessandro Lapadula, Rosario Pugliese and Francesco Tiezzi

Dipartimento di Sistemi e Informatica Università degli Studi di Firenze
{lapadula,pugliese,tiezzi}@dsi.unifi.it

Abstract. We define a type system for COWS, a formalism for specifying and
combining services, while modelling their dynamic behaviour. Our types permit
to express policies constraining data exchanges in terms of sets of service part-
ner names attachable to each single datum. Service programmers explicitly write
only the annotations necessary to specify the wanted policies for communicable
data, while a type inference system (statically) derives the minimal additional
annotations that ensure consistency of services initial configuration. Then, the
language dynamic semantics only performs very simple checks to authorize or
block communication. We prove that the type system and the operational seman-
tics are sound. As a consequence, we have the following data protection property:
services always comply with the policies regulating the exchange of data among
interacting services. We illustrate our approach through a simplified but realistic
scenario for a service-based electronic marketplace.

1 Introduction

Service-oriented computing (SOC) is an emerging paradigm for developing loosely
coupled, interoperable, evolvable applications which exploits the pervasiveness of the
Internet and its related technologies. SOC systems deliver application functionality as
services to either end-user applications or other services. Current software engineer-
ing technologies for SOC, however, remain at the descriptive level and do not support
analytical tools for checking that SOC applications enjoy desirable properties and do
not manifest unexpected behaviors. To reason about and guarantee such properties, one
must also be able to specify and enforce some security policies. Indeed, programming
service oriented middlewares and the applications running on them without putting
data at risk or compromising robustness of the whole platform requires services to be
checked and their resource usage to be strictly put in relation to their capabilities.

Great efforts have been recently devoted to embed security mechanisms within stan-
dard programming features (some of these techniques are surveyed in [1]). Language-
based mechanisms are a scalable way to provide evidence that a large number of ap-
plications enjoy some given properties. For example, by using type systems, one can
prove the type soundness of the language as a whole, from which it follows that all
well-typed applications do comply with the policies stated by their types. To facilitate
the task of designing such a sound language for SOC, one can initially focus only on

? This work has been supported by the EU project SENSORIA, IST-2005-016004.

the mechanisms at the basis of SOC. Afterwards, this core formalism could hopefully
be expanded into a full-fledged language by adding the high level, often redundant,
constructs typical of effective programming languages.

Many researchers have hence put forward exploiting the studies on process calculi, a
cornerstone of current foundational research on specification and analysis of concurrent,
distributed and mobile systems through mathematical — mainly algebraic and logical
— tools. Indeed, due to their algebraic nature, process calculi convey in a distilled
form the compositional programming style of SOC. This is witnessed by the several
process calculi like formalisms for SOC proposed in the literature by now (see, e.g., [2–
9]). However, although capable of describing complex systems and applications, such
proposals still lack those reasoning mechanisms and analytical tools, e.g. type systems
and behavioural equivalences, that process calculi usually hand down.

In this paper, we tailor the type-based approach for protecting data in global comput-
ing applications put forward in [10] to COWS, a formalism for specifying service-based
applications that we introduce in [9]. We thus define a typed variant of COWS that per-
mits expressing and forcing policies regulating the exchange of data among interacting
services. Programmers can indeed settle the partners usable to exchange any given da-
tum (and, then, the services that can share it), thus avoiding the datum be accessed (by
unwanted services) through unauthorized partners. The language (static and dynamic)
semantics then guarantees that well-typed services always comply with the constraints
expressed by the type associated to each single datum.

The rest of the paper is organized as follows. Section 2 introduces syntax, type
inference and operational semantics of (our typed variant of) COWS, while Section 3
presents our main results. Section 4 demonstrates our approach through a simplified but
realistic scenario for a service-based electronic marketplace. Finally, Section 5 touches
upon comparisons with more strictly related work and directions for future work.

2 COWS: Calculus for Orchestration of Web Services

Before formally defining our language, we provide some insights on its main features.
We refer the interested reader to [9] for further motivations on the design of COWS, for
many examples illustrating its peculiarities and expressiveness, and for comparisons
with other process-based and orchestration formalisms.

The design of COWS has been influenced by the principles underlying WS-
BPEL [11], the de facto standard language for orchestration of web services. Similarly
to WS-BPEL, COWS supports service instances with shared states, allows a same pro-
cess to play more than one partner role and permits programming stateful sessions by
correlating different service interactions. However, COWS intends to be a foundational
model not specifically tight to web services’ current technology. Thus, some WS-BPEL
constructs, such as e.g. fault and compensation handlers and flow graphs, do not have
a precise counterpart in COWS, rather they are expressed in terms of more primitive
operators (see [12], Sect. 3). The design of COWS has also taken advantage of previous
work on process calculi. In fact, it combines in an original way constructs and fea-
tures borrowed from well-known process calculi, e.g. asynchronous communication,

polyadic synchronization, pattern matching, protection, delimited receiving and killing
activities, while however resulting different from any of them.

The basic elements of COWS are partners and operations. They can be combined
to designate communication endpoints and can be exchanged in communication, but
dynamically received names cannot form endpoints used to receive further invocations.
Endpoints naming mechanism is very flexible, e.g. it permits identifying a same service
by means of different logic names and separately dealing with the names composing
an endpoint. This is, e.g., exploited in request-response interaction, where usually the
service provider knows the name of the response operation, but not the partner name of
the service it has to reply to.

COWS computational entities are called services. Typically, a service creates one
specific instance to serve each received request. Instances may run concurrently. Each
instance can be composed of concurrent threads that may offer a choice among alterna-
tive receive activities. Services could be able to receive multiple messages in a statically
unpredictable order and in such a way that the first incoming message triggers creation
of a service instance which subsequent messages are routed to. Pattern matching is the
mechanism used for correlating messages logically forming a same interaction ‘ses-
sion’ by means of their same contents. It permits locating those data that are important
to identify service instances and is flexible enough for allowing a single message to par-
ticipate in multiple interaction sessions, each identified by separate correlation values.

Inter-service communication give rise to substitutions of variables with values.
However, to enable concurrent instances or threads within an instance to share the state
(or part of it), receive activities in COWS do not bind variables. The range of application
of the substitution generated by a communication is then regulated by the delimitation
operator, that is the only binder of the calculus. Delimitation, additionally, can be used
to generate fresh private names (as the restriction operator of the π-calculus) and to de-
limit the field of action of the kill activity, a powerful orchestration construct that can
be used to force termination of whole service instances. Sensitive code can however be
protected from the effect of a forced termination by using the protection operator.

The type system we present in this paper permits to express and enforce policies for
regulating the exchange of data among services. To implement such policies, program-
mers can annotate data with sets of partner names characterizing the services authorized
to use and exchange them; these sets are called regions. The language operational se-
mantics uses these annotations to guarantee that computations proceed according to
them. This property, called soundness, can be stated as follows

A service s is sound if, for any datum v in s associated to region r and for all
evolutions of s, it holds that v can be exchanged only by using partners in r.

To facilitate the task of decorating COWS terms with type annotations, we let the type
system partially infer such annotations à la ML: service programmers explicitly write
only the annotations necessary to specify the wanted policies for communicable data;
then, a type inference system (statically) performs some coherence checks (e.g. the part-
ner used by an invoke must belong to the regions of all data occurring in the argument
of the activity) and derives the minimal region annotations for variable declarations that
ensure consistency of services initial configuration. This allows us to define an opera-
tional semantics with types [13] which is simpler than a full-fledged typed operational
semantics, because it only performs simple checks (i.e. subset inclusion) using region

Table 1. COWS syntax

s ::= kill(k) | u • u′!{e(x̄)}r | g | s | s | {|s|} | [d] s | ∗ s (services)

g ::= 0 | p • o?w̄.s | g + g (receive-guarded choice)

annotations to authorize or block transitions. Our main results prove that the type sys-
tem and the operational semantics are sound. As a consequence, we have that services
always comply with the constraints expressed by the type of each single datum.

Syntax. COWS syntax is parameterized by three countable and pairwise disjoint sets:
the set of (killer) labels (ranged over by k, k′, . . .), the set of values (ranged over by v, v′,
. . .) and the set of ‘write once’ variables (ranged over by x, y, . . .). The set of values is
left unspecified; however, we assume that it includes the set of names, ranged over by n,
m, . . . , mainly used to represent partners and operations. COWS is also parameterized
by a set of expressions, ranged over by e, whose exact syntax is deliberately omitted;
we just assume that expressions contain, at least, values and variables. Notably, killer
labels are not (communicable) values. Notationally, we prefer letters p, p′, . . . when we
want to stress the use of a name as a partner, o, o′, . . . when we want to stress the use
of a name as an operation. We will use w to range over values and variables, u to range
over names and variables, and d to range over killer labels, names and variables.

Regions can be either finite subsets of partners and variables or the distinct element
> (denoting the universe of partners). The set of all regions, ranged over by r, is partially
ordered by the subset inclusion relation ⊆, and has > as top element.

Notation ·̄ stands for tuples of objects, e.g. x̄ is a compact notation for denoting
the tuple of variables 〈x1, . . . , xn〉 (with n ≥ 0). We assume that variables in the same
tuple are pairwise distinct. All notations shall extend to tuples component-wise. An
expression e tagged with region r will be written as {e}r; an untagged e will stand for
{e}>. We will write e(x̄) to make explicit all the variables x̄ occurring in e (we still
write e when this information is not needed), and ē (resp. r̄) to denote the tuple of the
expressions (resp. regions) occurring in {e}r.

We will call raw services those COWS services written according to the syntax in
Table 1. Intuitively, raw services only contain those region annotations that implement
the policies for data exchange settled by the programmers. Services are structured ac-
tivities built from basic activities, i.e. the empty activity 0, the kill activity kill() , the
invoke activity • ! and the receive activity • ? , by means of (receive) prefixing
. , guarded choice + , parallel composition | , protection {| |} , delimitation []

and replication ∗ . Notably, as in the Lπ [14], communication endpoints of receive
activities are identified statically because their syntax only allows using names and not
variables. We adopt the following conventions about the operators precedence: monadic
operators bind more tightly than parallel composition, and prefixing more tightly than
choice. We shall omit a trailing 0 and use [d1, . . . , dn] s to denote [d1] . . . [dn] s.

The only binding construct is delimitation: [d] s binds d in the scope s. The occur-
rence of a name/variable/label is free if it is not under the scope of a binder. We denote
by fd(t) (resp. bd(t)) the set of names, variables and killer labels that occur free (resp.
bound) in a term t, by fv(t) (resp. bv(t)) the set of free (resp. bound) variables in t,

Table 2. Type inference system

Γ ` 0 � Γ ` 0 (t-nil) Γ ` kill(k) � Γ ` kill(k) (t-kill)

∀ r′ ∈ {ri}i∈{1,..,n} u1 ∈ r′
(t-inv)

Γ ` u1 • u2!〈{e1(ȳ1)}r1 , . . . , {en(ȳn)}rn 〉 �
(Γ + {x : r1}x∈ȳ1 + . . . + {x : rn}x∈ȳn) ` u1 • u2!〈{e1(ȳ1)}r1 , . . . , {en(ȳn)}rn 〉

Γ + {x : {p}}x∈fv(w̄) ` s � Γ′ ` s′
(t-rec)

Γ ` p • o?w̄.s � Γ′ ` p • o?w̄.s′

Γ ` g1 � Γ1 ` g′1 Γ ` g2 � Γ2 ` g′2
(t-sum)

Γ ` g1 + g2 � Γ1 + Γ2 ` g′1 + g′2

Γ ` s � Γ′ ` s′
(t-prot)

Γ ` {|s|} � Γ′ ` {|s′|}
Γ ` s � Γ′ ` s′

(t-repl)
Γ ` ∗ s � Γ′ ` ∗ s′

Γ ` s � Γ′ ` s′ n < reg(Γ′)
(t-delname)

Γ ` [n] s � Γ′ ` [n] s′

Γ ` s � Γ′ ` s′
(t-dellab)

Γ ` [k] s � Γ′ ` [k] s′

Γ, {x : ∅} ` s � Γ′, {x : r} ` s′ x < reg(Γ′)
(t-delvar)

Γ ` [x] s � Γ′ ` [{x}r−{x}] s′

Γ ` s1 � Γ1 ` s′1 Γ ` s2 � Γ2 ` s′2
(t-par)

Γ ` s1 | s2 � Γ1 + Γ2 ` s′1 | s′2

and by fk(t) the set of free killer labels in t. Two terms are alpha-equivalent if one can
be obtained from the other by consistently renaming bound names/variables/labels. As
usual, we identify terms up to alpha-equivalence. For simplicity sake, in the sequel we
assume that bound variables in services are pairwise distinct (of course, this condition
is not restrictive and can always be fulfilled by possibly using alpha-conversion).

A type inference system. The annotations put by the type inference are written as su-
perscripts, to better distinguish them from those put by the programmers. Thus, the
syntax of variable delimitation becomes [{x}r] s, which means that the datum that dy-
namically will replace x will be used at most by the partners in r. Typed COWS services
are then generated by the syntax in Table 1 where, differently from the previous section,
d ranges over killer labels, names and annotated variables as {x}r. Notably, types may
depend on partner variables, i.e. on parameters of receiving activities; during compu-
tation, they are therefore affected by application of substitutions that replace partner
variables with partner names. We assume that the region of a partner name always con-
tains, at least implicitly, such partner.

The type inference system is presented in Table 2. Typing judgements are written
Γ ` s � Γ′ ` s′, where the type environment Γ is a finite function from variables
to regions such that fv(s) ⊆ dom(Γ) and bv(s) ∩ dom(Γ) = ∅ (the same holds for Γ′

and s′). Type environments are written as sets of pairs of the form x : r, where x is a
partner variable and r is its assumed region annotation. The domain of an environment
is defined as usual: dom(∅) = ∅ and dom(Γ, {x : r}) = dom(Γ) ∪ {x}, where ‘,’ denotes
union between environments with disjoint domains. The region of Γ is the union of the
regions in Γ, i.e. reg(∅) = ∅ and reg(Γ, {x : r}) = r ∪ reg(Γ). We will write Γ + Γ′ to
denote the environment obtained by extending Γ with Γ′; + is inductively defined by

Γ + ∅ = Γ

Γ + {x : r} =

{
Γ′, {x : r ∪ r′} if Γ = Γ′, {x : r′}
Γ, {x : r} otherwise

Γ + ({x : r}, Γ′) = (Γ + {x : r}) + Γ′

Hence, the judgement ∅ ` s � ∅ ` s′ can be derived only if s is a closed raw
service (because the initial environment is empty); if it is derivable, then s′ is the typed
service obtained by decorating s with the region annotations describing the use of each
variable of s in its scope. Type inference determines such regions by considering the
invoking and receiving partners where the variables occur.

We now comment on the most significant typing rules. Rule (t-inv) checks if the
invoked partner u1 belongs to the regions of the communicated data. If it succeeds,
the type environment Γ is extended by associating a proper region to each variable
used in the expressions argument of the invoke activity. Rule (t-rec) tries to type s in
the type environment Γ extended by adding the receiving partner to the regions of the
variables in w̄. Rules (t-sum) and (t-par) yield the same typing; this is due to the sharing
of variables. For instance, service [x] (p • o?〈x〉 | p′ • o′!〈{x}r〉) with p′ ∈ r is annotated
as [{x}r′] (p • o?〈x〉 | p′ • o′!〈{x}r〉) with r′ = ({p} ∪ r − {x}). In rule (t-delname), premise
n < reg(Γ′) prevents a new name n to escape from its binder [n] in the inference. As an
example, consider the closed raw service

[z] p • o?〈z〉 . [p′] p′′ • o′′!〈{z}{p′′,p′}〉 (∗)

Without the premise n < reg(Γ′), the service resulting from the type inference would
be [{z}{p′′,p′,p}] p • o?〈z〉 . [p′] p′′ • o′′!〈{z}{p′′,p′}〉. The problem with this service is that
the name p′ occurring in the annotation associated to z by the inference system escapes
from the scope of its binder and, thus, represents a completely different name. Although,
service (∗) is not typable, by a simple semantics preserving manipulation one can get a
typable service as, e.g., the following one [p′] [z] p • o?〈z〉 . p′′ • o′′!〈{z}{p′′,p′}〉.

Similarly, in rule (t-delvar), premise x < reg(Γ′) prevents initially closed services
to become open at the end of the inference. Otherwise, e.g., the type inference would
transform the closed raw service

[x] p • o?〈x〉 . [y] p′ • o′?〈y〉 . p′′ • o′′!〈{x}{p′′,y}〉 (∗∗)

into the open service [{x}{p,p′′,y}] p • o?〈x〉 . [{y}{p′}] p′ • o′?〈y〉 . p′′ • o′′!〈{x}{p′′,y}〉. Also in
this case, we can easily modify the untypable service (∗∗) to get a typable one with a
similar semantics like, e.g., the service [y] [x] p • o?〈x〉 . p′ • o′?〈y〉 . p′′ • o′′!〈{x}{p′′,y}〉.

Furthermore, in (t-delvar), x is annotated with r − {x}, rather than with r, otherwise
initially closed services could become open. E.g., the closed raw service [x] p • o?〈x〉 .

Table 3. Structural congruence

∗ 0 ≡ 0 ∗ s ≡ s | ∗ s {|0|} ≡ 0
{| {|s|} |} ≡ {|s|} {|[d] s|} ≡ [d] {|s|} [d] 0 ≡ 0

[d1] [d2] s ≡ [d2] [d1] s if d1, {x}r1 and d2, {y}r2

[n] [{x}r] s ≡ [{x}r] [n] s if n<r
[{x}r1] [{y}r2] s ≡ [{y}r2] [{x}r1] s if y<r1 and x<r2

s1 | [d] s2 ≡ [d] (s1 | s2) if d < fd(s1)∪fk(s2)

Table 4. Matching rules

M(v, {v}r) = ∅ M(x, {v}r) = {x 7→ {v}r}
M(w1, {v1}r1) = σ1 M(w̄2, {v2}r2) = σ2

M((w1, w̄2), ({v1}r1 , {v2}r2)) = σ1] σ2

p′ • o′!〈{x}{p′,x}〉 would be transformed into the open service [{x}{p,p′,x}] p • o?〈x〉 .
p′ • o′!〈{x}{p′,x}〉 (indeed, x occurs in the annotation associated to its declaration). Notice
that, although the region associated to x by the inference does never record that a ser-
vice possibly transmits x with regions containing x, rule (t-delvar) is sound because we
assumed that the region of a partner name, at least implicitly, contains the partner name.

Definition 1. A service s is well-typed if ∅ ` s′ � ∅ ` s for some raw service s′.

Operational semantics. COWS operational semantics is defined only for closed ser-
vices, i.e. services without free variables/labels (similarly to many real compilers, we
consider terms with free variables/labels as programming errors), but of course the rules
also involve non-closed services (see e.g. the premises of rules (del)). Formally, the se-
mantics is given in terms of a structural congruence and of a labelled transition relation.

The structural congruence ≡ identifies syntactically different services that intuitively
represent the same service. It is defined as the least congruence relation induced by a
given set of equational laws. We explicitly show in Table 3 the laws for replication, pro-
tection and delimitation, while omit the (standard) laws for the other operators stating
that parallel composition is commutative, associative and has 0 as identity element, and
that guarded choice enjoys the same properties and, additionally, is idempotent. All the
presented laws are straightforward. Only notice that the last law can be used to extend
the scope of names (like a similar law in the π-calculus), thus enabling communication
of restricted names, except when the argument d of the delimitation is a free killer label
of s2 (this avoids involving s1 in the effect of a kill activity inside s2).

To define the labelled transition relation, we need a few auxiliary functions. First,
we exploit a function [[]] for evaluating closed expressions (i.e. expressions without
variables): it takes a closed expression and returns a value. However, [[]] cannot be
explicitly defined because the exact syntax of expressions is deliberately not specified.

Then, through the rules in Table 4, we define the partial functionM(,) that per-
mits performing pattern-matching on semi-structured data thus determining if a receive

Table 5. Is there an active kill(k)? / Are there conflicting receives along p • o matching {v}r?

kill(k) ↓kill

s ↓kill ∨ s′ ↓kill

s | s′ ↓kill

s ↓kill

{|s|} ↓kill

s ↓kill

[d] s ↓kill

s ↓kill

∗ s ↓kill

|M(w̄, {v}r) |< `

p • o?w̄.s ↓`
p • o,{v}r

s ↓`
p • o,{v}r d < {p, o}

[d] s ↓`
p • o,{v}r

s ↓`
p • o,{v}r

{|s|} ↓`
p • o,{v}r

g ↓`
p • o,{v}r ∨ g′ ↓`

p • o,{v}r
g + g′ ↓`

p • o,{v}r

s ↓`
p • o,{v}r ∨ s′ ↓`

p • o,{v}r
s | s′ ↓`

p • o,{v}r

s ↓`
p • o,{v}r

∗ s ↓`
p • o,{v}r

and an invoke over the same endpoint can synchronize. The rules state that two tuples
match if they have the same number of fields and corresponding fields have matching
values/variables. Variables match any annotated value, and a value matches an anno-
tated value only if, apart for the region annotation, they are identical. When tuples w̄
and {v}r do match,M(w̄, {v}r) returns a substitution, that also records region annotations
of values exchanged in communication, for the variables in w̄; otherwise, it is undefined.
Substitutions (ranged over by σ) are functions mapping variables to annotated values
and are written as collections of pairs of the form x 7→ {v}r. Application of substitution
σ to s, written s ·σ, has the effect of replacing every free occurrence of x in s with v, for
each x 7→ {v}r ∈ σ, by possibly using alpha-conversion for avoiding v to be captured by
name delimitations within s. We use |σ | to denote the number of pairs in σ and σ1]σ2
to denote the union of σ1 and σ2 when they have disjoint domains.

We also define a function, named halt(), that takes a service s as an argument and
returns the service obtained by only retaining the protected activities inside s. halt() is
defined inductively on the syntax of services. The most significant case is halt({|s|}) =

{|s|}. In the other cases, halt() returns 0, except for parallel composition, delimitation
and replication operators, for which it acts as an homomorphism.

Finally, in Table 5, we inductively define two predicates: s↓kill checks if s can imme-
diately perform a kill(k); s↓`

p •o,{v}r
, with ` natural number, checks existence of potential

communication conflicts, i.e. the ability of s of performing a receive activity matching
{v}r over the endpoint p • o that generates a substitution with fewer pairs than `.

The labelled transition relation
α−−→ is the least relation over services induced by the

rules in Table 6, where α is generated by the following grammar:

α ::= †k | (p •o) C {v}r | (p •o) B w̄ | p •o bσc w̄ {v}r | †
In the sequel, we use d(α) to denote the set of names, variables and killer labels oc-
curring in α, except for α = p •o bσc w̄ {v}r for which we let d(p •o bσc w̄ {v}r) = d(σ),
where d({x 7→ {v}r}) = {x, v}∪ r and d(σ1]σ2) = d(σ1)∪d(σ2). The meaning of labels
is as follows: †k denotes execution of a request for terminating a term from within the
delimitation [k] , (p •o) C {v}r and (p •o) B w̄ denote execution of invoke and receive

Table 6. Operational semantics

kill(k)
†k−−→ 0 (kill) p • o?w̄.s

(p • o)Bw̄−−−−−−−→ s (rec)

[[ē]] = v̄ fv(r̄) = ∅
(inv)

p • o!{e}r
(p • o)C{v}r−−−−−−−−→ 0

g1
α−−→ s

(choice)
g1 + g2

α−−→ s

s
p • o bσ]{x 7→{v}r }c w̄ {v′}r′−−−−−−−−−−−−−−−−−−→ s′ r′′ · σ ⊆ r

(delsub)

[{x}r′′] s
p • o bσc w̄ {v′}r′−−−−−−−−−−−→ s′ · {x 7→ {v}r}

s
†k−−→ s′

(delkill)
[k] s

†−→ [k] s′

s
α−−→ s′ d , {x}r d<d(α) s ↓kill⇒ α=†, †k

(delpass)
[d] s

α−−→ [d] s′

s
α−−→ s′ x<d(α)

(xpass)
[{x}r] s

α−−→ [{x}r] s′

s1
(p • o)Bw̄−−−−−−−→ s′1 s2

(p • o)C{v}r−−−−−−−−→ s′2 M(w̄, {v}r) = σ ¬(s1 | s2 ↓|σ|p • o,{v}r
)

(com)

s1 | s2
p • o bσc w̄ {v}r−−−−−−−−−−→ s′1 | s′2

s1
p • o bσc w̄ {v}r−−−−−−−−−−→ s′1 ¬(s2 ↓|M(w̄,{v}r) |

p • o,{v}r
)

(parcon f)

s1 | s2
p • o bσc w̄ {v}r−−−−−−−−−−→ s′1 | s2

s1
†k−−→ s′1

(parkill)
s1 | s2

†k−−→ s′1 | halt(s2)

s1
α−−→ s′1 α , (p •o bσc w̄ {v}r), †k

(parpass)
s1 | s2

α−−→ s′1 | s2

s
α−−→ s′

(prot)
{|s|} α−−→ {|s′|}

s ≡ s1 s1
α−−→ s2 s2 ≡ s′

(cong)
s

α−−→ s′

activities over the endpoint p • o, respectively, p •o bσc w̄ {v}r (if σ , ∅) denotes execu-
tion of a communication over p • o with receive parameters w̄ and matching values {v}r
and with substitution σ to be still applied, † and p •o b∅c w̄ {v}r denote computational
steps corresponding to taking place of forced termination and communication (without
pending substitutions), respectively. Hence, a computation from a closed service s0 is a
sequence of connected transitions of the form

s0
α1−−→ s1

α2−−→ s2
α3−−→ s3 . . .

where, for each i, αi is either p •o b∅c w̄ {v}r or †, and si is called reduct of s0.
We comment on salient points. Activity kill(k) forces termination of all unprotected

parallel activities (rules (kill) and (parkill)) inside an enclosing [k] , that stops the killing
effect by turning the transition label †k into † (rule (delkill)). Existence of such delimita-
tion is ensured by the assumption that the semantics is only defined for closed services.
Sensitive code can be protected from killing by putting it into a protection {| |}; this way,
{|s|} behaves like s (rule (prot)). Similarly, [d] s behaves like s, except when the transition

label α contains d or when a kill activity is active in s and α does not correspond to a kill
activity (rules (delpass) and (xpass)): in such cases the transition should be derived by us-
ing rules (delkill) or (delsub). In other words, kill activities are executed eagerly. A service
invocation can proceed only if the expressions in the argument can be evaluated and
their regions do not contain variables (rule (inv)). A receive activity offers an invocable
operation along a given partner name (rule (rec)). The execution of a receive permits
to take a decision between alternative behaviours (rule (choice)). Communication can
take place when two parallel services perform matching receive and invoke activities
(rules (com)). Communication generates a substitution that is recorded in the transition
label (for subsequent application), rather than a silent transition as in most process cal-
culi. If more then one matching is possible the receive that needs fewer substitutions
is selected to progress (rules (com) and (parcon f)). This mechanism permits to correlate
different service communications thus implicitly creating interaction sessions and can
be exploited to model the precedence of a service instance over the corresponding ser-
vice specification when both can process the same request. A substitution {x 7→ {v}r}
for a variable x is applied to a term (rule (delsub)) when the delimitation for x is encoun-
tered, i.e. the whole scope s of x is determined, provided that the region annotations of
the variable declaration and of the substituent datum v do comply i.e. r′ · σ ⊆ r. This
condition also means that as a value is received it gets annotated with a smaller region.
The substitution for x is then applied to s and x disappears from the term and cannot
be reassigned a value. Execution of parallel services is interleaved (rule (parpass)), but
when a kill activity or a communication is performed. Indeed, the former must trigger
termination of all parallel services (according to rule (parkill)), while the latter must en-
sure that the receive activity with greater priority progresses (rule (com) and (parcon f)).
The last rule states that structurally congruent services have the same transitions.

3 Main Results

Our main results are standard and state that well-typedness is preserved along compu-
tations (subject reduction) and that well-typed services do respect region annotations
(type safety). Together, these results imply the soundness of our theory, i.e. no violation
of data regions will ever occur during the evolution of well-typed services. The formal
account of these results follow. To save space, we only outline the techniques used in
the proofs and refer the interested reader to [15] for a full account.

For the proof of subject reduction, we need some standard lemmata concerning
substitution and weakening. The substitution lemma handles the substitution of partner
variables with partner names. Application of a substitution σ to a type environment Γ,
written Γ · σ, is defined only when dom(σ) ∩ dom(Γ) = ∅ and, for each x 7→ {v}r ∈ σ,
has the effect of replacing every occurrence of x in the regions of Γ with v, i.e.

∅ · {x 7→ {v}r} = ∅ and (Γ, {y : r′}) · {x 7→ {v}r} = Γ · {x 7→ {v}r}, {y : (r′ · {x 7→ {v}r})}.
Lemma 1 (Substitution Lemma). If Γ, {x : r} ` s � Γ′, {x : r′} ` s′ and σ = {x 7→
{v}r′′ }, then Γ · σ ` s · σ � Γ′ · σ ` s′ · σ.

Proof. By induction on the length of the type derivation, with a case analysis on the last
rule used in the derivation. �

Lemma 2 (Weakening Lemma). Let Γ′ ` s′ � Γ ` s and x < bd(s), then Γ′ + {x :
r} ` s′ � Γ + {x : r} ` s.
Proof. By a straightforward induction on the length of the type derivation, with a case
analysis on the last used rule, and by exploiting the fact that extending Γ by adding
{x : r} does not affect the premise of rule (t-inv). �

We also need a few auxiliary results. The first one states that function halt() pre-
serves well-typedness and can be easily proved by induction on the definition of halt().

Lemma 3. If s is well-typed then halt(s) is well-typed.

The next results establish well-typedness preservation by the structural congruence
and by the labelled transition relation, respectively. We use the following preorder v on
type environments: we write Γ v Γ′ if there exists a Γ′′ such that Γ + Γ′′ = Γ′.

Lemma 4. If Γ′ ` s′1 � Γ ` s1 and s1 ≡ s2 then there exists a raw service s′2 such
that Γ′ ` s′2 � Γ ` s2.
Proof. By a straightforward induction on the derivation of s1 ≡ s2. �

Theorem 1. If Γ′1 ` s′1 � Γ1 ` s1 and s1
α−−→ s2 then there exist a raw service s′2 and

two type environments Γ2 and Γ′2 such that Γ2 v Γ1, Γ′1 v Γ′2 and Γ′2 ` s′2 � Γ2 ` s2.

Proof. By induction on the length of the inference of s1
α−−→ s2, with a case analysis on

the last used rule. �
We can now easily prove that well-typedness is preserved along computations.

Corollary 1 (Subject Reduction). If service s is well-typed and s
α−−→ s′ with α ∈

{†, n̂ b∅c w̄ {v}r}, then s′ is well-typed.

To characterize the errors that our type system can capture we use predicate ⇑ :
s ⇑ holds true when s can immediately generate a runtime error. This happens when
in an active context there is an invoke activity on a partner not included in the region
annotation of some of the expressions argument of the activity. Formally, ⇑ is defined
as the least predicate closed under the following rules

∃ r′ ∈ r̄ . p < r′

p • o!{e}r ⇑
s ⇑

A[[s]] ⇑
s ≡ s′ s ⇑

s′ ⇑
We remark that the runtime errors that our type discipline can capture are related to

the policies for the exchange of data. We skip such runtime errors as ‘unproper use of
variables’ (e.g. in x • o!v̄ the variable x is not replaced by a partner name) that can be
easily dealt with standard type systems.

We can now prove that well-typed services do respect region annotations, from
which it follows that the type system and the operational semantics are sound.

Theorem 2 (Type Safety). If s is a well-typed service then s ⇑ holds false.
Proof. By induction on the derivation of s ⇑, with a case analysis on the last used rule,
we prove that if s ⇑ then s is not well-typed, from which the thesis follows. �
Corollary 2 (Type Soundness). Let s be a well-typed service. Then s′ ⇑ holds false for
every reduct s′ of s.
Proof. Corollary 1 can be repeatedly applied to prove that s′ is well-typed, then Theo-
rem 2 permits to conclude. �

4 A case study by W3C

In this section we illustrate an application of our framework to a simplified but realistic
electronic marketplace scenario inspired by [16]. To show usefulness of our approach,
we focus on the central part of the protocol where sensitive data are exchanged, i.e. we
omit the initial bartering and the concluding interactions, and expand the part relative
to the payment process. We will write Z , s to assign a symbolic name Z to service s.

Suppose a service buyer invokes a service seller to purchase some goods. Once
seller has received an order request, it sends back the partner name of the service
credit agency to be used for the payment. buyer can then check the information on
credit agency and, possibly, confirm the payment by sending its credit card data to
seller. In this case, seller forwards the received data to credit agency and passes the
order to the service shipper. In the end, the whole system is

EMP , buyer | credit agency | [psh] (seller | shipper)

When fixing the policies for data exchange, services can (safely) assume that, at
the outset, partner names ps, pca and pb are publicly available for invoking seller,
credit agency and buyer, respectively. Instead, the partner name psh for invoking
shipper is private and only shared with seller. Of course, due to the syntactical restric-
tions, the ‘locality’ condition for partner names is preserved by the semantics. Thus, the
initials assumptions remain true forever.

The buyer service is defined as

buyer , [id] (ps • oord!〈{id}{ps,pb}, pb, order〉
| [xca] pb • oca in f o?〈id, xca〉.

[p, o] (p • o!〈〉 | p • o?〈〉.ps • opay!〈{id}{ps,pb}, {cc data}{ps,xca}〉
+ p • o?〈〉.ps • ocanc!〈{id}{ps,pb}〉))

The endpoint ps • oord is used for invoking the seller service and transmitting the order
together with the buyer’s partner name pb. The (restricted) name id represents the order
identifier and is used for correlating all those service interactions that logically form a
same session relative to the processing of order. For example, the specification of buyer
could be slightly modified to allow the service to simultaneously make multiple orders:
of course, although all such parallel threads must use the same partner ps to interact
with seller, they can exploit different order identifiers as a means to correlate messages
belonging to different interaction sessions. The type attached to id only allows buyer
and seller to exchange and use it, since they are the only services that can receive along
ps and pb. Instead, pb comes without an attached policy, since it is publicly known (it
is transmitted to indicate the service making the invocation for the call-back operation).
For simplicity, also order has no attached policy; thus, it could be later on communi-
cated to any other service. Variable xca is used to store the partner name of the credit
agency service to be used to possibly finalize the purchase and also to implement the
policy for buyer’s credit card data. After the information on the credit agency service
are verified, buyer sends a message to seller either to confirm or to cancel the order.
This is simply modelled as an internal non-deterministic choice, by exploiting the pri-
vate endpoint p • o (a more precise model can be obtained by exploiting the encodings
shown in [9]).

The seller service is defined as

seller , ∗ [xb, xid, xord, k] ps • oord?〈xid, xb, xord〉.
(xb • oca in f o!〈{xid}{xb}, pca〉
| [xcc] ps • opay?〈xid, xcc〉.(pca • ocr req!〈xord, {xcc}{pca}〉

| psh • osh req!〈xord〉)
| ps • ocanc?〈xid〉.kill(k))

Once seller receives an order along ps • oord, it creates one specific instance that sends
back to buyer (via xb) the partner name pca of the credit agency service where the pay-
ment will be made. Whenever the seller instance receives the credit card data correlated
to xid, it forwards them to credit agency and passes the order to the (internal) shipper
service. Instead, if buyer demands cancellation of the order, the corresponding instance
of seller is immediately terminated. Name k is used to delimit the effect of the kill
activity only to the relevant instance.

The remaining two services are defined as

credit agency , ∗ [x, y] pca • ocr req?〈x, y〉. < execute the payment >

shipper , ∗ [z] psh • osh req?〈z〉. < process the order >

Let now consider the type inference phase. Service seller gets annotated as follows:

seller′ , ∗ [{xb}{ps}] [{xid}{ps,xb}, {xord}>, k] ps • oord?〈xid, xb, xord〉.
(xb • oca in f o!〈{xid}{xb}, pca〉
| [{xcc}{ps,pca}] ps • opay?〈xid, xcc〉.(pca • ocr req!〈xord, {xcc}{pca}〉

| psh • osh req!〈xord〉)
| ps • ocanc?〈xid〉.kill(k))

The type inference has the task of checking consistency of region annotations of
the arguments occurring within invoke activities and that of deriving the annotations
for variable declarations. As regards consistency, there are only two explicitly typed
expressions used as arguments of invoke activities, i.e. xid and xcc, and their types {xb}
and {pca} satisfy the consistency constraint (see rule (t-inv)). The remaining expressions
occurring as arguments of invoke activities, i.e. the only xord, have implicitly assigned
type > (indeed, recall that we assumed that an untagged e stands for {e}>) and are
thus trivially consistent. As regards type derivation, when a variable is put in the envi-
ronment (rule (t-delvar)), it is assigned type ∅. Later on, when a variable is used as an
argument of an invoke or receive, its type can possibly be enriched (rules (t-inv) and
(t-rec)). Thus, at the end of the inference, declaration of variable xb, that is only used
in ps • oord?〈xid, xb, xord〉, will have assigned region {ps} (application of rule (t-rec)).
Instead, declaration of xord has assigned type > (rule (t-inv) is used) while that of xcc

has assigned type {ps, pca} and, similarly, declaration of xid gets annotated with {ps, xb}
(in both cases rules (t-inv) and (t-rec) are used). Notably, in seller′, delimitation [{xb}ps]
does not commute any longer with delimitations [{xid}{ps,xb}, {xord}>, k] (otherwise the
service would become opened).

The variable declarations of the other services are annotated in a trivial way: xca with
{pb}, x and y with {pca}, and z with {psh} (we assume that credit agency and shipper do
not re-transmit the received data). Thus, if we call buyer′, credit agency′ and shipper′

the other typed services, then the system resulting from the type inference is

buyer′ | credit agency′ | [psh] (seller′ | shipper′)

After some computation steps, the system can become

[id] (ps • opay!〈{id}{ps,pb}, {cc data}{ps,pca}〉 | [psh] (seller′ |
[k, {xcc}{ps,pca}] (ps • opay?〈id, xcc〉.(pca • ocr req!〈order, {xcc}{pca}〉

| psh • osh req!〈order〉)
| ps • ocanc?〈id〉.kill(k))

| ∗ [{x}{pca}, {y}{pca}] pca • ocr req?〈x, y〉. < execute the payment >
| ∗ [{z}{psh}] psh • osh req?〈z〉. < process the order >))

Thus, after buyer′ sends the credit card data, we get

[id, psh] (seller′

| [k] (pca • ocr req!〈order, {cc data}{pca}〉 | psh • osh req!〈order〉
| ps • ocanc?〈id〉.kill(k))

| ∗ [{x}{pca}, {y}{pca}] pca • ocr req?〈x, y〉. < execute the payment >
| ∗ [{z}{psh}] psh • osh req?〈z〉. < process the order >)

At this point, seller′ can safely communicate credit card data of buyer′ to credit agency′

and, then, forward the order to shipper′.
Suppose now that service seller′ also contains such a malicious invocation as

psh • o!〈. . . , {xcc}r, . . .〉. In order to successfully pass the type inference phase, it should
be that psh ∈ r (otherwise rule (t-inv) could not be applied). Therefore, in the resulting
typed service we would have the variable declaration [{xcc}r′] , with r ⊆ r′. Now, com-
munication with buyer′ would be blocked by the runtime checks because the datum is
tagged as {cc data}{ps,pca}, and psh ∈ r ⊆ r′ implies that r′ * {ps, pca}.

5 Concluding remarks

We have introduced a first analytical tool for checking that COWS specifications en-
joy some desirable properties concerning the partners, and hence the services, that can
safely access any given datum and, in that respect, do not manifest unexpected be-
haviors. Our type system is quite simple: types are just sets and operations on types
are union, intersection, subset inclusion, etc. The language operational semantics only
involves types in efficiently implementable checks, i.e. subset inclusions. While im-
plementation of our framework is currently in progress, we are also working on the
definition of a completely static variant where all dynamic checks have been moved to
the static phase.

The types used in this paper are essentially inspired by the ‘region types’ for
Confined-λ of [17] and for global computing calculi of [10]. There are however some
noticeable differences. In fact, COWS permits describing not necessarily distributed
systems and exchanging heterogeneous data along endpoints, which calls for a more
dynamic typing mechanism than communication channels. Moreover, COWS permits
annotating only the relevant data while Confined-λ requires typing any constant, func-
tion and channel. The group types, originally proposed for the Ambients calculus [18]
and then recast to the π-calculus [19], have purposes similar to our region annotations,

albeit they are only used for constraining the exchanges of ambient and channel names.
Confinement has been also explored in the context of Java, and related calculi, for con-
fining classes and objects within specific packages [20, 21].

More expressive type disciplines based, e.g., on session types and behavioural types
are emerging as powerful tools for taking into account behavioural and non-functional
properties of computing systems. In the case of services, they could permit to express
and enforce many relevant policies for, e.g., regulating resources usage, constraining the
sequences of messages accepted by services, ensuring service interoperability and com-
positionality, guaranteeing absence of deadlock in service composition, checking that
interaction obeys a given protocol. Some of the studies developed for the π-calculus (see
e.g. [22–26]) are promising starting points, but they need non trivial adaptations to deal
with all COWS peculiar features. For example, one of the major problems we envisage
concerns the treatment of killing and protection activities, that are not commonly used
in process calculi.

Many efforts have been devoted to develop analytical tools for SOC foundational
languages. Some works study mechanisms for comparing global descriptions (i.e.
choreographies) and local descriptions (i.e. orchestrations) of a same system. Means
to check conformance of these different views have been defined in [5] and, by relying
on session types, in [22]. COWS, instead, only considers service orchestration and fo-
cuses on modelling the dynamic behaviour of services without the limitations possibly
introduced by a layer of choreography. Some other works [27, 28] have concentrated
on modelling web transactions and on studying their properties in programming lan-
guages based on the π-calculus, while [29, 30] formalize long running transactions with
special care for the Sagas mechanism [31]. A type system specifying security policies
for orchestration has been introduced in [32] for a very basic formalism based on the
λ-calculus. Finally, a type system for checking compliance between (simplified) WS-
BPEL terms and the associated WSDL documents has been defined in [7].

Acknowledgements. We thank the anonymous referees for their useful comments.

References

1. Schneider, F.B., Morrisett, G., Harper, R.: A language-based approach to security. In Infor-
matics: 10 Years Ahead, 10 Years Back, LNCS 2000, pp. 86–101, 2000.

2. Brogi, A., Canal, C., Pimentel, E., Vallecillo, A.: Formalizing web service choreographies.
ENTCS, 105:73–94, Elsevier, 2004.

3. Viroli, M.: Towards a formal foundational to orchestration languages. ENTCS, 105:51–71.
Elsevier, 2004.

4. Geguang, P., Xiangpeng, Z., Shuling, W., Zongyan, Q.: Towards the semantics and verifica-
tion of bpel4ws. In WLFM. Elsevier, 2005.

5. Busi, N., Gorrieri, R., Guidi, C., Lucchi, R., Zavattaro, G.: Choreography and orchestration
conformance for system design. In COORDINATION, LNCS 4038, pp. 63–81, 2006.

6. Laneve, C., Padovani, L.: Smooth orchestrators. In FoSSaCS, LNCS 3921, pp. 32–46, 2006.
7. Lapadula, A., Pugliese, R., Tiezzi, F.: A WSDL-based type system for WS-BPEL. In CO-

ORDINATION, LNCS 4038, pp. 145–163, 2006.
8. Guidi, C., Lucchi, R., Gorrieri, R., Busi, N., Zavattaro, G.: SOCK: a calculus for service

oriented computing. In ICSOC, LNCS 4294, pp. 327–338, 2006.

9. Lapadula, A., Pugliese, R., Tiezzi, F.: A Calculus for Orchestration of Web Services. In
ESOP, volume 4421 of LNCS, pages 33–47. Springer, 2007.

10. De Nicola, R., Gorla, D., Pugliese, R.: Confining data and processes in global computing
applications. Science of Computer Programming, 63:57–87, 2006.

11. OASIS. Web Services Business Process Execution Language Version 2.0. Technical report,
WS-BPEL TC OASIS, August 2006. http://www.oasis-open.org/.

12. Lapadula, A., Pugliese, R., Tiezzi, F.: A Calculus for Orchestration of Web Services (full
version). Technical report, Dipartimento di Sistemi e Informatica, Univ. Firenze, 2007.
http://rap.dsi.unifi.it/cows.

13. Goguen, H.: Typed operational semantics. In Typed Lambda Calculi and Applications, LNCS
902, pp. 186–200, 1995.

14. Merro, M., Sangiorgi, D.: On asynchrony in name-passing calculi. Mathematical Structures
in Computer Science, 14(5):715–767, 2004.

15. Lapadula, A., Pugliese, R., Tiezzi, F.: Regulating data exchange in service oriented applica-
tions (full version). Technical report, Dipartimento di Sistemi e Informatica, Univ. Firenze,
2007. http://rap.dsi.unifi.it/cows.

16. Ross-Talbot, S., Fletcher, T.: Web services choreography description language: Primer
(working draft). Technical report, W3C, June 2006.

17. Kirli, Z.D.: Confined mobile functions. In CSFW, IEEE, pp. 283–294, 2001.
18. Cardelli, L., Ghelli, G., Gordon, A.D.: Types for the ambient calculus. Inf. Comput.,

177(2):160–194, 2002.
19. Cardelli, L., Ghelli, G., Gordon, A.D.: Secrecy and group creation. Inf. Comput.,

196(2):127–155, 2005.
20. Vitek, J., Bokowski, B.: Confined types in java. SPE, 31(6):507–532. Wiley, 2001.
21. Zhao, T., Palsber, J., Vitek, J.: Lightweight confinement for featherweight java. In OOPSLA,

pp. 135–148. ACM Press, 2003.
22. Carbone, M., Honda, K., Yoshida, N.: A calculus of global interaction based on session

types. In DCM, 2006. To appear as ENTCS, Elsevier.
23. Yoshida, N., Vasconcelos, V.T.: Language primitives and type discipline for structured

communication-based programming revisited: Two systems for higher-order session com-
munication. In SecReT, ENTCS. Elsevier, 2006.

24. Kobayashi, N.: Type systems for concurrent programs. In 10th Anniversary Colloquium of
UNU/IIST, LNCS 2757, pp. 439–453, 2003.

25. Igarashi, A., Kobayashi, N.: A generic type system for the pi-calculus. Theor. Comput. Sci.,
311(1-3):121–163, 2004.

26. Kobayashi, N., Suenaga, K., Wischik, L.: Resource usage analysis for the π-calculus. In
VMCAI, LNCS 3855, pp. 298–312, 2006.

27. Laneve, C., Zavattaro, G.: Foundations of web transactions. In FoSSaCS, LNCS 3441, pp.
282–298, 2005.

28. Mazzara, M., Lucchi, R.: A pi-calculus based semantics for WS-BPEL. Journal of Logic
and Algebraic Programming, 70(1):96–118, 2006.

29. Bruni, R., Melgratti, H.C., Montanari, U.: Theoretical foundations for compensations in flow
composition languages. In POPL, pp. 209–220. ACM, 2005.

30. Bruni, R., Butler, M., Ferreira, C., Hoare, T., Melgratti, H.C., Montanari, U.: Comparing
two approaches to compensable flow composition. In CONCUR, LNCS 3653, pp. 383–397,
2005.

31. Garcia-Molina, H., Salem, K.: Sagas. In SIGMOD, pp. 249–259. ACM Press, 1987.
32. Bartoletti, M., Degano, P., Ferrari, G.: Security Issues in Service Composition. In FMOODS,

LNCS 4037, pp. 1–16, 2006.

