
The Size Variance Relationship of Business Firm
Growth Rates
Massimo Riccaboni ∗, Fabio Pammolli † ‡, Sergey V. Buldyrev §, Linda Ponta ¶, and H. E. Stanley ‡

∗CUSAS,University of Florence, Florence, 50127 Italy,†IMT Institute for Advanced Studies, Via S. Micheletto 3, Lucca, 55100 Italy,§Department of Physics, Yeshiva University,
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The relationship between the size and the variance of firm growth
rates is known to follow an approximate power-law behavior σ(S) ∼
S−β(S) where S is the firm size and β(S) ≈ 0.2 is an exponent
weakly dependent on S. Here we show how a model of proportional
growth which treats firms as classes composed of various number of
units of variable size, can explain this size-variance dependence. In
general, the model predicts that β(S) must exhibit a crossover from
β(0) = 0 to β(∞) = 1/2. For a realistic set of parameters, β(S)
is approximately constant and can vary in the range from 0.14 to
0.2 depending on the average number of units in the firm. We test
the model with a unique industry specific database in which firm
sales are given in terms of the sum of the sales of all their products.
We find that the model is consistent with the empirically observed
size-variance relationship.
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Introduction

G ibrat was probably the first who noticed the skew size
distributions of business firms (1). As a simple candi-

date explanation he postulated the “Law of Proportionate
Effect”according to which the expected value of the growth
rate of a business firm is proportional to the current size of
the firm (2). Several models of proportional growth have been
subsequently introduced in economics (3; 4; 5; 6). In particu-
lar, Simon and collegues (7; 8) examined a stochastic process
for Bose-Einstein statistics similar to the one originally pro-
posed by Yule (9) to explain the distribution of sizes of genera.
The Law of Proportionate Effect implies that the variance σ2

of firm growth rates is independent of size, while according
to the Simon model it is inversely proportional to the size of
business firms. The two predictions have not been confirmed
empirically and following Stanley and colleagues (10) several
scholars (11; 12) have recently found a non-trivial relation-
ship between the size of the firm S and the variance σ2 of its
growth rate σ ∼ S−β with β ≈ 0.2.

Numerous attempts have been made to explain this puz-
zling evidence by considering firms as collection of indepen-
dent units of uneven size (10; 12; 13; 14; 15; 16; 17; 18) but
existing models do not provide a unifying explanation for the
probability density functions of the growth and size of firms
as well as the size variance relationship. Thus, the scaling of
the variance of firm growth rates is still an unsolved problem
in economics (19; 20). Recent papers (21; 22; 23; 24; 25) pro-
vide a general framework for the growth and size of business
firms based on the number and size distribution of their con-
stituent parts (12; 13; 14; 15; 21; 26; 27; 28; 29). Specifically,
Fu and collegues (21) present a model of proportional growth
in both the number of units and their size, drawing some gen-
eral implications on the mechanisms which sustain business
firm growth. The model in (21) accurately predicts the shape
of the distribution of the growth rates (21; 22) and the size
distribution of firms (23). In this paper we derive the impli-
cations of the model in (21) on the size-variance relationship.
The main conclusion is that the size variance relationship is

not a true power law with a single well-defined exponent β but
undergoes a slow crossover from β = 0 for S → 0 to β = 1/2
for S → ∞. The predictions of the model are tested in both
real world and simulation settings.

The Model
In the model presented in (21) and summarized in the Supple-
mental Information firms consist of a random number of units
of variable size. The number of units K is defined as in the
Simon model. The size of the units ξ evolves according to a
multiplicative brownian motion (Gibrat process). Thus both
the growth distribution, Pη, and the size distribution, Pξ, of
the units are lognormal.

To derive the size variance relationship we must com-
pute the conditional probability density of the growth rate
P (g|S, K), of a firm with K units and size S. For K →∞ the
conditional probability density function P (g|S, K) develops
a tent shape functional form, because in the center it con-
verges to a Gaussian distribution with the width decreasing
inverse proportionally to

√
K, while the tails are governed by

the behavior of the growth distribution of a single unit which
remains to be wide independently of K.

We can also compute the conditional probability P (S|K),
which is the convolution of K unit size distributions Pξ. In
case of lognormal Pξ with a large logarithmic variance Vξ and
mean mξ, the convergence of P (S|K) to a Gaussian is very
slow (23). Since P (S, K) = P (S|K)P (K), we can find

P (g|S) =
X

P (g|S, K)P (S|K)P (K), [1]

where all the distributions P (g|S, K), P (S|K), P (K) can be
found from the parameters of the model. P (S|K) has a sharp
maximum near S = SK ≡ Kµξ , where µξ = exp(mξ + Vξ/2)
is the mean of the lognormal distribution of the unit sizes.
Conversely, P (S|K) as function of K has a sharp maximum
near KS = S/µξ. For the values of S such that P (KS) >> 0,
P (g|S) ≈ P (g|KS), because P (S|K) serves as a δ(K − KS)
so that only terms with K ≈ KS make a dominant contribu-
tion to the sum of Eq. (1). Accordingly, one can approximate
P (g|S) by P (g|KS) and σ(S) by σ(KS). However, all firms
with S < S1 = µξ consist essentially of only one unit and thus

σ(S) =
p

Vη [2]
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for S < µξ. For large S if P (KS) > 0

σ(S) = σ(KS) =
p

V/KS =
exp(3Vξ/4 + mξ/2)

p
exp(Vη)− 1√

S
[3]

where mη and Vη are the logarithmic mean and variance of the
unit growth distributions Pη and V = exp(Vξ)[exp(Vη) − 1],
as in (21). Thus one expects to have a crossover from β = 0
for S < µξ to β = 1/2 for S >> S∗, where

S∗ = exp(3Vξ/2 + mξ)(exp(Vη)− 1)/Vη [4]

is the value of S for which Eq.(2) and Eq.(3) give the same
value of σ(S). Note that for small Vη < 1, S∗ ≈ exp(3Vξ/2 +
mξ). The range of crossover extends from S1 to S∗, with
S∗/S1 = exp(Vξ) → ∞ for Vξ → ∞. Thus in the double log-
arithmic plot of σ vs. S one can find a wide region in which
the slope β slowly vary from 0 to 1/2 (β ≈ 0.2) in agreement
with many empirical observations.

The crossover to β = 1/2 will be observed only if K∗ =
S∗/µξ = exp(Vξ) is such that P (K∗) is significantly larger
than zero. For the distribution P (K) with a sharp exponen-
tial cutoff K = K0, the crossover will be observed only if
K0 >> exp(Vξ).

Two scenarios are possible for S > S0 = K0µξ. In the
first, there will be no firms with S >> S0. In the second,
if the distribution of the size of units Pξ is very broad, large
firms can exist just because the size of a unit can be larger
than S0. In this case exceptionally large firms might consist
of one extremely large unit ξmax, whose fluctuations dominate
the fluctuations of the entire firm.

One can introduce the effective number of units in a firm
Ke = S/ξmax, where ξmax is the largest unit of the firm. If
Ke < 2, we would expect that σ(S) will again become equal to
its value for small S given by Eq. (2), which means that un-
der certain conditions σ(S) will start to increase for very large
firms and eventually becomes the same as for small firms.

Whether such a scenario is possible depends on the com-
plex interplay of Vξ and P (K). The crossover to β = 1/2 will
be seen only if P (K > K∗) > P (ξ > S∗) which means that
such large firms predominantly consist of a large number of
units. Taking into account the equation of Pξ, one can see
that P (ξ > S∗) ∼ exp(−9/8Vξ).

On the one hand, for an exponential P (K), this implies
that exp(− exp(Vξ)/K0) > exp(−9/8Vξ) or

Vξ > 8 exp(Vξ)/(9K0). [5]

This condition is easily violated if Vξ >> ln K0. Thus for the
distributions P (K) with exponential cut-off we will never see
the crossover to β = 1/2 if Vξ >> ln K0.

On the other hand, for a power law distribution P (K) ∼
K−φ, the condition of the crossover becomes exp(Vξ)

1−φ >
exp(−9/8Vξ), or (φ− 1)Vξ < 9/8Vξ which is rigorously satis-
fied for

φ < 17/8 [6]

but even for larger φ is not dramatically violated. Thus for
power law distributions, we expect a crossover to β = 1/2 for
large S and significantly large number N of firms in the data
set: NP (K∗) > 1. The sharpness of the crossover mostly de-
pends on Vξ. For power law distributions we expect a sharper
crossover than for exponential ones because the majority of
firms in a power law distribution have a small number of prod-
ucts K, and hence β = 0 almost up to S∗, the size at which
the crossover is observed. For exponential distributions we
expect a slow crossover which is interrupted if Vξ is compara-
ble to ln K0. For S >> S1 this crossover is well represented
by the behavior of σ(KS).

We confirm these heuristic arguments by means of com-
puter simulations (see the Supplemental Information).

Figures 1 and 5 illustrate the importance of the effective
number of units Ke. When KS becomes larger than K0, σ(S)
starts to follow σ(Ke). Accordingly, for very large firms σ(S)
becomes almost the same as for small firms. The maximal neg-
ative value of the slope βmax of the double logarithmic graphs
presented in Fig. 1(a) correspond to the inflection points of
these graphs, and can be identified as approximate values of
β for different values of K0. One can see that βmax increases
as K0 increases from a small value close to 0 for K0 = 10
to a value close to 1/2 for K0 = 105 in agreement with the
predictions of the central limit theorem.

To further explore the effect of the P (K) on the size-
variance relationship we select P (K) to be a pure power law
P (K) ∼ K−2 [Fig. 2(a)]. Moreover, we consider a realis-
tic P (K) where K is the number of products by firms in the
pharmaceutical industry [Fig. 2(b)]. This distribution can be
well approximated by a Yule distribution with φ = 2 and an
exponential cut-off for large K. Figure 2 shows that, for a
scale-free power-law distribution P (K), the size variance re-

lationship depicts a steep crossover from σ =
p

Vη given by

Eq. (2) for small S to σ =
p

V/KS given by Eq. (3) for large
S, for any value of Vξ.

As we see, the size-variance relationship of firms σ(S) can
be well approximated by the behavior of σ(KS) [Fig 1(a)]. It
was shown in (24) that, for realistic Vξ, σ2(K) can be approx-

imated in a wide range of K as σ(K) ∼ K−β with β ≈ 0.2,

which eventually crosses over to K−1/2 for large K. In other
words, one can write σ(K) ∼ K−β(K) where β(K), defined as
the slope of σ(K) on a double logarithmic plot, increases from
a small value dependent on Vξ at small K to 1/2 for K →∞.
Accordingly, one can expect the same behavior for σ(S) for
KS < K0.

Thus it would be desirable to derive an exact analytical ex-
pression for σ(K) in case of lognormal and independent Pξ and
Pη. Unfortunately the radius of convergence of the expansion
of a logarithmic growth rate in inverse powers of K is equal
to zero, and these expansions have only a formal asymptotic
meaning for K → ∞. However, these expansions are useful
since they demonstrate that µ and σ do not depend on mη and
mξ except for the leading term in µ: m0 = mη + Vη/2. Not
being able to derive close-form expressions for σ (see Supple-
mental Information), we perform extensive computer simula-
tions, where ξ and η are independent random variables taken
from lognormal distributions Pξ and Pη with different Vξ and
Vη. The numerical results (Fig. 3) suggest that

ln σ2(K)K/C ≈ Fσ [ln(K)− f(Vξ, Vη)] , [7]

where Fσ(z) is a universal scaling function describing a
crossover from Fσ(z) → 0 for z → ∞ to Fσ(z)/z → 1 for
z → −∞ and f(Vξ, Vη) ≈ fξ(Vξ) + fη(Vη) are functions of
Vξ and Vη which have linear asymptotes for Vξ → ∞ and
Vη →∞ [Fig. 3(b)].

Accordingly, we can try to define β(z) = (1 − dFσ/dz)/2
[Fig. 4 (a)]. The main curve β(z) can be approximated by
an inverse linear function of z, when z → −∞ and by a
stretched exponential as it approaches the asymptotic value
1/2 for z → +∞. The particular analytical shapes for these
asymptotes are not known and derived solely from least square
fitting of the numerical data. The scaling for β(z) is only ap-
proximate with significant deviations from a universal curve
for small K. The minimal value for β practically does not
depend on Vη and is approximately inverse proportional to a
linear function of Vξ:

βmin =
1

pVξ + q
[8]
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where p ≈ 0.54 and q ≈ 2.66 are universal values [Fig. 4(b)].
This finding is significant for our study, since it indicates that
near its minimum, β(K) has a region of approximate con-
stancy with the value βmin between 0.14 and 0.2 for Vξ be-
tween 4 and 8. These values of Vξ are quite realistic and cor-
respond to the distribution of unit sizes spanning over from
roughly two to three orders of magnitude (68% of all units),
which is the case in the majority in economic and ecological
systems. Thus our study provides a reasonable explanation
for the abundance of value of β ≈ 0.2.

The above analysis shows that σ(S) is not a true power-
law function, but undergoes a crossover from β = βmin(Vξ) for
small firms to β = 1/2 for large firms. However this crossover
is expected only for very broad distributions P (K). If it is
very unlikely to find a firm with K > K0, σ(S) will start to
grow for S > K0µξ. Empirical data do not show such an in-
crease (Fig. 6), because in reality there are few giant firms
which rely on few extremely large units. These firms are ex-
tremely volatile and hence unstable. Therefore for real data
we do see neither a crossover to β = 1/2 nor an increase of σ
for large companies.

The Empirical Evidence
Since the size variance relationship depends on the parti-
tion of firms into their constituent components, to properly
test our model one must decompose an industrial system into
parts. In this section we analyze a unique database, kindly
provided by the EPRIS program, which records the sales fig-
ures of 916,036 pharmaceutical products commercialized by
7,184 firms worldwide from 1994 to 2004. The database cov-
ers the whole size distribution for products and firms and
monitors flows of entry and exit at every level of aggregation.
Products are classified by companies, markets and interna-
tional brand names, with different distributions P (K) with
〈K〉 = K0 ranging from 5.8 for international products to al-
most 1,600 for markets [Tab. 1]. If firms have on average K0

products and Vξ << ln K0, the scaling variable z = K0 is pos-
itive and we expect β → 1/2.On the contrary, if Vξ >> ln K0,
z < 0 and we expect β → 0. These considerations work only
for a broad distribution of P (K) with mild skewness such as
an exponential distribution. At the opposite extreme, if all
companies have the same number of products, the distribu-
tion of S is narrowly concentrated near the most probable
value S0 = µξK and there is no reason to define β(S). Only
very rarely S >> S0, due to a low probability of observing an
extremely large product which dominates the fluctuation of a
firm. Such a firm is more volatile than other firms of equal
size. This would imply negative β. If P (K) is power law dis-
tributed, there is a wide range of values of K, so that there
are always firms for which ln K >> Vξ and we can expect a
slow crossover from β = 0 for small firms to β = 1/2 for large
firms, so that for a wide range of empirically plausible Vξ, β is
far form 1/2 and statistically different from 0. The estimated
value of the size-variance scaling coefficient β goes form 0.123
for products to 0.243 for therapeutic markets with companies
in the middle (0.188) [Tab. 1 and Fig. 5].

The model in (21) relies upon general assumptions of in-
dependence of the growth of products from each other and
from the number of products K. However, these assumptions
could be violated and other reasons for the scaling of the size
variance relationship such as units interdependence, size and
time dependence must be considered (see the Supplemental
Information for a discussion of candidate explanations). To
discriminate among different plausible explanaitons we run a
set of experiments in which we keep the real P (K) and ran-

domly reassign products to firms. In the first simulation we
randomly reassign products by keeping the real world rela-
tionship between the size, ξ, and growth, η, of products. In
the second simulation we reassign also η. Finally in the last
simulation we generate elementary units according to a mul-
tiplicative brownian motion (Gibrat process) with empirically
estimated values of the mean and variance of ξ and η. Tab. 1
summarizes the results of our simulations.

The first simulation allows us to check for the size depen-
dence and unit interdepence hypotheses by randomly reassign-
ing elementary units to firms and markets. In doing that, we
keep the number of the products in each class and the history
of the fluctuation of each product sales unchanged. As for the
size dependence, our analysis shows that there is indeed strong
correlation between the number of products in the company
and their average size defined as 〈ξ(K)〉 = 〈 1

K

PK
i=1 ξi〉 where

〈〉 indicates averaging over all companies with K products. We
observe an approximate power law dependence 〈ξ(K)〉 ∼ Kγ ,
where γ = 0.38. If this would be a true asymptotic power law
holding for K → ∞ than the average size of the company of
K products would be proportional to ξ(K)K ∼ K1+γ . Ac-
cordingly, the average number of products in the company of
size S would scale as K0(S) ∼ S1/(1+γ) and consequently due
to central limit theorem β = 1/(2 + 2γ). In our data base,
this would mean that the asymptotic value of β = 0.36. Sim-
ilar logic was used to explain β in (15; 11). Another effect of
random redistribution of units will be the removal of possible
correlations among ηi in a single firm (unit interdependence).
Removal of positive correlations would decrease β, while re-
moval of negative correlations would increase β. The mean
correlation coefficient of the product growth rates at the firm
level 〈ρ(K)〉 also has an approximate power law dependence

〈ρ(K)〉 ∼ Kζ , where ζ = −0.36. Since larger firms have big-
ger products and are more diversified than small firms the size
dependence and unit interdepencence cancel out and β prac-
tically does not change if products are randomly reassigned
to firms.

To control the effect of time dependence, we keep the sizes
of products ξi and their number Kα at year t for each firm α
unchanged, so St =

PKα
i=1 ξi is the same as in the empirical

data. However, to compute the sales of a firm in the follow-

ing year eSt+1 =
PKα

i=1 ξ′i, we assume that ξ′i = ξiηi, where
ηi is an annual growth rate of a randomly selected product.

The surrogate growth rate eg = ln
eSt+1
St

obtained in this way

does not display any size-variance relationship at the level of
products (β∗2 = 0). However, we still observe a size variance
relationship at higher levels of aggregation. This test demon-
strates that 1/3 of the size variance relationship depends on
the growth process at the level of elementary units which is
not a pure Gibrat process. However, asynchronous product
lifecycles are washed out upon aggregation and there is a per-
sistent size-variance relationship which is not due to product
auto-correlation.

Finally we reproduced the model in (21) with the empir-
ically observed P (K) and the estimated moments of the log-
normal distribution of products (mξ = 7.58, Vξ = 4.41). We
generate N random products according to our model (Gibrat
process) with the empirically observed level of Vξ and mξ. As
we can see in Tab. 1, the model in (21) closely reproduce the
values of β at any level of aggregation. We conclude that the
model in (21) correctly predicts the size-variance relationship
and the way it scales under aggregation.

The variance of the size of the constituent units of the firm
Vξ and the distribution of units into firms are both relevant
to explain the size variance relationship of firm growth rates.
Simulations results in Fig. 6 reveal that if elementary units
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are of the same size (Vξ = 0) the central limit theorem will
work properly and β ≈ 1/2. As predicted by our model, by
increasing the value of Vξ we observe at any level of aggrega-
tion the crossover of β form 1/2 to 0. The crossover is faster
at the level of markets than at the level of products due to
the higher average number of units per class K0. However,
in real world settings the central limit theorem never applies
because firms have a small number of components of variable
size (Vξ > 0). For empirically plausible values of Vξ and K0

β ≈ 0.2.

Discussion
Firms grow over time as the economic system expands and
new investment opportunities become available. To capture
new business opportunities firms open new plants and launch
new products, but the revenues and return to the investments
are uncertain. If revenues were independent random vari-
ables drawn from a Gaussian distribution with mean me and
variance Ve one should expect that the standard deviation
of the sales growth rate of a firm with K products will be
σ(S) ∼ S−β(S) with β = 1/2 and S = meK. On the contrary,
if the size of business opportunities is given by a multiplicative
brownian motion (Gibrat’s process) and revenues are indepen-
dent random variables drawn from a lognormal distribution
with mean mξ and variance Vξ the central limit theorem does
not work effectively and β(S) exhibits a crossover from β = 0
for S → 0 to β = 1/2 for S → ∞. For realistic distributions
of the number and size of business opportunities, β(S) is ap-
proximately constant, as it varies in the range from 0.14 to
0.2 depending on the average number of units in the firm K0

and the variance of the size of business opportunities Vξ. This
implies that a firm of size S is expected to be riskier than the
sum of S firms of size 1, even in the case of constant returns
to scale and independent business opportunities.
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Fig. 1. (a) Simulation results for σ(S) according to Eq. (1) for exponential P (K) = exp(−K/K0)/K0 with K0 = 10, 102, 103, 104, 105 and lognormal Pξ

and Pη with Vξ = 5.13, mξ = 3.44, Vη = 0.36, µη = 0.016 computed for the pharmaceutical database. One can see that, for small enough S and for different K0,

σ(S) follows a universal curve which can be well approximated with σ(KS), with KS = S/µξ ≈ S/405. For KS > K0, σ(S) departs from the universal behavior

and starts to increase. This increase can be explained by the decrease of the effective number of units Ke(S) for the extremely large firms. The maximal negative slope

βmax increases as K0 increases in agreement with the predictions of the central limit theorem. (b) One can see, that Ke(S) reaches its maximum around S ≈ Kµξ . The

positions of maxima in Ke(S) coincide with the positions of minima in σ(S).
.

Table 1. The size-variance relationship σ(S) ∼ S−β(S): estimated values of β and simulation results β∗

at different levels of aggregations from products to markets. In simulation 1 (β∗1) products are randomly
reassigned to firms and markets. In simulation 2 (β∗2) the growth rates of products are reassigned too. In
simulation 3 (β∗3) we reproduce the model in (21) with real P (K) and estimated values of mξ = 7.58 and
Vξ = 2.10.

N K0 β1 β∗1 β∗2 β∗3
Markets 574 1,596.9 0.243 0.213 0.232 0.221
Firms 7,184 127.5 0.188 0.196 0.125 0.127
Intl. Products 189,302 5.8 0.151 0.175 0.038 0.020
All Products 916,036 – 0.123 0.123 0 0
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Fig. 2. Size variance relationship σ(S) for various Vξ with P (K) ∼ K−2 (a) and real P (K) (b).A sharp crossover from β = 0 to β = 1/2 is seen for the power

law distribution even for large values of Vξ . In case of real P (K) one can see a wide crossover regions in which σ(S) can be approximated by a power-law relationship with

0 < β < 1/2. Note that the slope of the graphs (β) decreases with the increase of Vξ . The graphs of β(KS) and their asymptotes are also shown with squares and circles,

respectively.
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Fig. 3. (a) Simulation results for σ2(K) in case of lognormal Pξ and Pη and different Vξ and Vη plotted on a universal scaling plot as a functions of scaling variable

z = ln(K)−f(Vξ, Vη). (b) The shift function f(Vξ, Vη). The graph shows that f(Vξ, Vη) ≈ fξ(Vξ)+fη(Vη) Both fξ(Vξ) and fη(Vη) (inset) are approximately

linear functions.
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Fig. 4. (a) The effective exponent β(z) obtained by differentiation of σ2(z) plotted in Fig. 3 (a). Solid lines indicate least square fits for the left and right asymptotes.

The graph shows significant deviations of β(K, Vξ, Vη) from a universal function β(z) for small K, where β(K) develops minima. (b) The dependence of the minimal

value of βmin on Vξ . One can see that this value practically does not depend on Vη and is inverse proportional to the linear function of Vξ .

6 www.pnas.org — — Footline Author



10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

10
9

10
10

S
10

-2

10
-1

10
0

σ
1/Ke

Fig. 5. The standard error of firm growth rates (σ) (circles), and the share of the largest products (1/Ke) (squares) versus the size of the firm (S). As predicted by our

model for S < S1 = µξ ≈ 3.44, β ≈ 0. For S > S1 β increases but never reaches 1/2 due to the slow grow of the effective number of products (Ke). The flattering

of the upper tail is due to some large companies with unusually large products.

0 5 10 15 20 25
Vξ

0

0.1

0.2

0.3

0.4

0.5

β

Products
Firms
Markets

Fig. 6. The scaling of the size-variance relationship as a function of Vξ . β decays rapidly from 1/2 to 0 for Vξ → ∞. In the simulation we keep the real P (K) for

products, companies and markets and assign products drawn from a lognormal distribution with the empirically observed mean mξ and variance 0 < Vξ ≤ 25.

Footline Author PNAS Issue Date Volume Issue Number 7



Supplemental Information
Massimo Riccaboni ∗, Fabio Pammolli † ‡, Sergey V. Buldyrev §, Linda Ponta ¶, and H. E. Stanley ‡

∗CUSAS,University of Florence, Florence, 50127 Italy,†IMT Institute for Advanced Studies, Via S. Micheletto 3, Lucca, 55100 Italy,§Department of Physics, Yeshiva University,
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The purpose of this Supplemental Information is to describe
the model presented by Fu and collegues (1) and summarize
the empirical evidence that supports it.

The model
We model business firms as classes consisting of a random
number of units of variable size. The number of units is de-
fined as in the Simon model (2). The size of the units evolves
according to the Gibrat’s growth process (3).

Firms grow by capturing new business opportunities and
the probability that a new opportunity is assigned to a given
firm is proportional to the number of opportunities it has al-
ready got (2; 4; 5). At each time t a new opportunity is
assigned.

With probability b, the new opportunity is taken up by
a new firm, so that the average number of firms at time t is
N(t) = N(0) + bt.

With probability 1−b, the new opportunity is captured by
an active firm α with probability Pα = (1− b)Kα(t)/t, where
Kα(t) is the number of units of firm α at time t.

In the absence of the entry of new firms (b = 0) the prob-
ability distribution of the number of the units in the firms at
large t, i.e. the distribution P(K), is exponential:

P (K) ≈ 1

K(t)
exp(−K/K(t)), [1]

where K(t) = [n(0) + t]/N(0) is the average number of units
in the classes, which linearly grows with time.

If b > 0, P (K) becomes a Yule distribution which behaves
as a power law for small K:

P (K) ∼ K−ϕ, [2]

where ϕ = 2+b/(1−b) ≥ 2, followed by the exponential decay
of Eq. (1) for large K with K(t) = [n(0) + t]1−bn(0)b/N(0)
(2; 6).

In the Simon model opportunities are assumed to be of
unit size so that Sα(t) = Kα(t). On the contrary we as-
sume that each opportunity has randomly determined but fi-
nite size. In order to capture new opportunities firms launch
new products, open up new establishments, divisions or units.
Each opportunity is assigned to exactly one firm and the size
of the firm is measured by the sum of the sizes of the op-
portunities it has taken up (4). In this paper we consider
products as the relevant constituent parts of the companies
and measure their size in terms of sales, even if alternative
decompositions of the firm into subunits (e.g. plants, divi-
sions) and measures of size (e.g. the number of employees,
total assets) can be applied.

At time t, the size of each product ξi(t) > 0 is decreased
or increased by a random factor ηi(t) > 0 so that

ξi(t + 1) = ξi(t) ηi(t), [3]

where ηi(t), the growth rate of product i, is independent ran-
dom variable taken from a distribution Pη(ηi), which has finite
mean and standard deviation.

Thus at time t a firm α has Kα(t) products of size ξi(t),
i = 1, 2, ...Kα(t) so that its total size is defined as the sum of

the sales of its products Sα(t) ≡ PKα
i=1 ξi(t) and its growth

rate is measured as g = log(Sα(t + 1)/Sα(t)).
The probability distribution of firm growth rates P (g) is

given by

P (g) ≡
∞X

K=1

P (K)P (g|K), [4]

where P (g|K) is the distribution of the growth rates for
a firm consisting of K products. Using central limit theorem,
one can show that for large K and small g, P (g|K) converge
to a Gaussian distribution

P (g|K) ≈
√

K√
2πV

exp

„
− (g −m)2K

2V

«
, [5]

where V and m are functions of the distributions Pξ and
Pη. For the most natural assumption of the Gibrat process
for the sizes of the products these distributions are lognormal:

Pξ(ξi) =
1p
2πVξ

1

ξi
exp

`−(ln ξi −mξ)
2/2Vξ

´
, [6]

Pη(ηi) =
1p

2πVη

1

ηi
exp

`−(ln ηi −mη)2/2Vη

´
. [7]

In this case,
m = mη + Vη/2 [8]

and
V ≡ Kσ2 = exp(Vξ)(exp(Vη)− 1), [9]

but for large Vξ the convergence to a Gaussian is an
extremely slow process. Assuming that the convergence is
achieved, one can analytically show (1) that P (g) has sim-
ilar behavior to the Laplace distribution for small g i.e.
P (g) ≈ exp(−√2|g|/√V )/

√
2V , while for large g P (g) has

power law wings P (g) ∼ g−3 which are eventually truncated
for g →∞ by the distribution Pη of the growth rate of a single
product.

Using the fact that the n-th moment of the lognormal dis-
tribution

Px(x) =
1√

2πVx

1

x
exp

`−(ln xi −mx)2/2Vx

´
, [10]
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is equal to

µn,x ≡ 〈xn〉 = exp(nmx + n2Vx/2) [11]

we can make an expansion of a logarithmic growth rate in
inverse powers of K:

g = ln

PK
i=1 ξiηiPK
i=1 ξi

= ln µ1,η + ln

„
1 +

A

K(1 + B/K)

«

= mη +
Vη

2
+

A(1−B/K + B2/K2...)

K

−A2(1−B/K + B2/K2...)2

2K2
+ ...

= mη +
Vη

2
+

A

K
− AB + A2/2

K2
+ O(K−3)

where

A =

PK
i=1 ξi(ηi − µ1,η)

µ1,ηµ1,ξ
[12]

B =

PK
i=1 ξi − µ1,ξ

µ1,ξ
. [13]

Using the assumptions that ξi, and ηi are independent:
〈ξiηi〉 = 〈ξi〉〈ηi〉, 〈ηiηj〉 = 〈ηi〉〈ηj〉, and 〈ξiξj〉 = 〈ξi〉〈ξj〉
for i 6= j, we find 〈A〉 = 0, 〈AB〉 = 0, 〈A2〉 = CK, where
C = a(b− 1) with a = exp(Vξ) and b = exp(Vη). Thus

µ = 〈g〉 =

∞X
n=0

mn

Kn

σ2 = 〈g2〉 − µ2 =

∞X
n=1

Vn

Kn
, [14]

where m0 = mη + Vη/2, m1 = −C/2, V1 = C, V2 =
C[a(5b+1)/2−1−a2b(b+1)]. The higher terms involve terms
like 〈An〉/Kn, which will become sums of various products
〈ξk

i (ηi−µ1,η)k〉, where 2 ≤ k ≤ n. The contribution from k =

n has exactly K terms of µn,ξµ
−n
1,ξ

Pn
j=0 µj,ηµ−j

1,η(−1)n−j
`

j
n

´

with µj,xµ−j
1,x = exp(Vxj(j − 1)/2). Thus there are contribu-

tions to mn and Vn which grow as (ab)n(n+1)/2 with ab > 1,
which is faster than the n-th power of any λ > 0. The radius
of convergence of the expansions (14) is equal to zero, and
these expansions have only a formal asymptotic meaning for
K →∞. However, these expansions demonstrate that µ and
σ do not depend on mη and mξ except for the leading term
in µ: m0 = mη + Vη/2.

Not being able to derive close-form expressions for σ we
perform extensive computer simulations, in which ξ and η are
independent random variables taken from lognormal distribu-
tions Pξ and Pη with various Vξ and Vη (Fig. 1 and 2).

The Empirical Evidence
The model relies upon the assumptions of independence of the
growth of products from each other and from the number of
products K. However, these assumptions could be violated
and at least three alternative explanations must be analyzed:

1. Size dependence. The probability that an active firm cap-
tures a new market opportunity is more or less than pro-
portional to its current size. In particular, there could be

a positive relationship between the number of products of
firm α (Kα) and the size (ξi(α)) and growth (ηi(α)) of its
component parts due to monopolistic effects and economies
of scale and scope. If large and small companies do not get
access to the same distribution of market opportunities,
large firms can be riskier than small firms simply because
they tend to capture bigger opportunities.

2. Units interdependence. The growth processes of the con-
situent parts of a firm are not independent. One could ex-
pect product growth rates to be positively correlated at the
level of firm portfolios, due to product similarities and com-
mon management, and negatively correlated at the level of
relevant markets, due to substitution effects and competi-
tion. Based on these arguments, one would predict large
companies to be less risky than small companies because
their product portfolios tend to be more diversified.

3. Time dependence. The growth of firms constituent units
does not follow a pure Gibrat process due to serial auto-
correlation and lifecycles. Young products and firms are
supposed to be more volatile then predicted by the Gibrat’s
Law due to learning effects. If large firms are older and
have more mature products, they should be less risky than
small firms. On the contrary, ageing and obsolescence
would imply that incumbent firms are more unstable than
newcomers.

The first two hypotheses are not falsified by our data
(Fig. 3).

The number of products of a firm and their average size
defined as 〈ξ(K)〉 = 〈 1

K

PK
i=1 ξi〉, where 〈〉 indicates averag-

ing over all companies with K products, has an approximate
power law dependence 〈ξ(K)〉 ∼ Kγ , where γ = 0.38.

The mean correlation coefficient of product growth rates
at the firm level 〈ρ(K)〉 shows an approximate power law de-

pendence 〈ρ(K)〉 ∼ Kζ , where ζ = −0.36.
Since larger firms are composed by bigger products and

are more diversified than small firms the two effects compen-
sate each other. Thus if products are randomly reassigned to
companies, the size variance relationship will not change.

As for the time dependence hypothesis, despite there are
some departures from a Gibrat process at the product level
(Fig. 4) due to lifecycles and seasonal effects, they are too
weak to account for the size variance relationship. Moreover
asynchronous product lifecycles are washed out upon aggre-
gation.
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For K = 1 the distribution is perfectly Gaussian with Vη = 1 and mη = 0. However for large K the distribution develops a tent-shape form with the central part

close to a Gaussian with mean m = 1/2 as predicted by Eq. (8). The vast majority of firms (99.7%) have sizes in the vicinity of Kµξ which for K = 215 and
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extremely large products. The real number of products in these firms is Ke = 2.4, while the normally sized firms have Ke = 31. The fluctuations of these extremely large
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Fig. 2. The behavior of σ(S) for the exponential distribution P (K) = exp(−K/〈K〉)/〈K〉 and lognormal Pξ and Pη . We show the results for K0 =

1, 10, 100, 1000, 10000 and Vξ = 1, 5, 10. The graphs σ(KS) and the asymptote given by σ(S) =
p

V/KS =
exp(3Vξ/4+mξ/2)

√
exp(Vη)−1√

S
are also

given to illustrate our theoretical considerations. One can see that for Vξ = 1, σ(S) almost perfectly follows σ(KS) even for 〈K〉 = 10. However for Vξ = 5, the

deviations become large and σ(S) converges to σ(KS) only for 〈K〉 > 100. For Vξ = 10 the convergence is never achieved.
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Fig. 3. (a) The relationship between the average product size and the number of products of the firm. The log-log plot of 〈ξ(K)〉 vs. K shows power law dependence

〈ξ(K)〉 ∼ K0.38. (b) The relationship between the mean correlation coefficient of product growth rates and the number of products of a firm. The log-log plot of 〈ρ(K)〉
vs. K shows power law dependence 〈ρ(K)〉 ∼ K0.38.
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Fig. 4. (a) The average growth and the auto-correlation coefficient of products since launch. Products growth tend to be higher in the fist two years from entry. We detect

seasonal cycles and a weak (not significant) negative auto-correlation. (b) The average growth rate and the auto-correlation coefficient of firms from entry. The departures of

product growth from a Gibrat process are washed out upon aggregation. The growth rates do not depend on age and do not show a significant auto-correlation.
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