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For d ≥ 2, let X = (X1, . . . , Xd)be a vector of exchangeable continuous lifetimes with
joint survival function F. For such models, we study some properties of multivariate
aging of F that are described by means of the multivariate aging function BF , which
is a useful tool for describing the level curves of F. Specifically, the attention is
devoted to notions that generalize the univariate concepts of New Better than Used and
Increasing Failure Rate. These multivariate notions are satisfied by random vectors
whose components are conditionally independent and identically distributed having
univariate conditional survival function that is New Better than Used (respectively,
Increasing Failure Rate). Furthermore, they also have an interpretation in terms of
comparisons among conditional survival functions of residual lifetimes, given a same
history of observed survivals.

1. INTRODUCTION

For d ∈ N, d ≥ 2, let X = (X1, . . . , Xd) be a vector of continuous and positive random

variables with joint survival function F : R
d
+ → I, where R+ = [0, +∞] and I =

[0, 1]. In the field of reliability, where X1, . . . , Xd are interpreted as lifetimes of units
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or of components in a system, one is generally interested in studying qualitative
properties of F, such as dependence properties and aging properties.

As is well known, several approaches have been proposed in the literature to
define properties of multivariate aging that could be considered as natural extensions
of the univariate aging notions.

Here we focus our attention on the case when X is exchangeable and, conse-
quently, the univariate survival margins are equal to a same univariate survival function
that we denote by G, G : R+ → I.

For such models, we aim at studying some properties of multivariate aging of F. In
particular, we will consider properties that are described by means of the multivariate
aging function BF : I

d → I, given by

BF(u) = exp
(
−G

−1
(F(− log(u1), . . . , − log(ud)))

)
. (1.1)

Such a BF is a useful tool for describing the level curves of F and, as discussed
in some previous articles (see [6,7,9,16,18]), it can be used in fact for investigating
some notions of multivariate aging. Specifically, in [6] (see also [9]), it has been
argued that notions of multivariate aging based on BF can be defined by means of the
following scheme:

(i) Consider a univariate aging notion P (e.g., New Better than Used (NBU),
Increasing Failure Rate (IFR)).

(ii) Take the joint survival function F of d independent and identically distributed
(i.i.d.) lifetimes and prove results of the following type: Each lifetime has
the property P if, and only if, BF has the property P̃.

(iii) Define a multivariate aging notion as follows: Any exchangeable survival
function F is multivariate-P if BF has the property P̃.

In [6,9], the above analysis has been developed for the case d = 2, where it is also
shown that, for notions of this type, the relations among univariate aging, multivariate
aging, and dependence properties of F can be easily analyzed. In this article, we aim
at pointing out features and differences that arise in the extension of this study to the
multivariate case, making it worthy of further analysis.

Specifically, we concentrate our attention on notions that generalize the univariate
concepts of NBU and IFR. As we will show, the multivariate notions to be introduced
are satisfied by random vectors whose components are conditionally i.i.d. having a
NBU (respectively, IFR) univariate conditional survival function. This circumstance
has been considered as a natural requirement for Bayesian notions of multivariate
aging (see, e.g., [2]). Moreover, it implies the usual assumption that multivariate
extensions of some univariate aging property P should be satisfied by vectors of i.i.d.
lifetimes of type P.

Furthermore, these notions also have an interpretation in terms of the comparisons
among conditional survival functions of residual lifetimes, given the same history of
observed survivals, another interesting property of Bayesian aging according to [4].
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The article is organized as follows. Section 2 contains basic definitions and prop-
erties of multivariate aging functions. Some subclasses of such functions are also
introduced and the relations among them discussed. Section 3 presents some defi-
nitions of multivariate aging extending notions of NBU and IFR. Their properties
are discussed in detail. Finally, Section 4 is devoted to a short discussion about the
introduced definitions and their related results.

2. MULTIVARIATE AGING FUNCTION: DEFINITIONS
AND PROPERTIES

We start this section by introducing some useful notations and definitions.
Through this article, we will often formulate our results referring to one of the

following assumptions:

Assumption 1 (Exchangeable Case): We consider an exchangeable random vector
X = (X1, . . . , Xd) (d ≥ 2) of continuous lifetimes with joint survival function F :

R
d
+ → I and univariate survival marginals equal to G. We suppose that G is strictly

decreasing on R+ with G(0) = 1 and G(+∞) = 0.

Assumption 2 (i.i.d. Case): Under Assumption 1, we suppose in addition that
X1, X2, . . . , Xd are independent.

Given every survival function F, we can uniquely define the survival copula
KF : I

d → I by means of the formula

KF(u1, . . . , ud) = F
(

G
−1

(u1), . . . , G
−1

(ud)
)

.

It can also be defined, in an implicit way, by means of the functional equation

F(x1, . . . , xd) = KF(G(x1), . . . , G(xd)).

Such a KF describes the dependence properties of X (see, e.g., [19,25]). When the
components of X are independent, KF(u) = �d(u) = u1u2 · · · ud ; in this case, we will
also denote F by means of the symbol F�,G.

Associated with F, we can also consider the multivariate aging function BF as
given by (1.1). In terms of the copula KF , we can write

BF(u) = exp
(
−G

−1
(KF(G(− log(u1)), . . . , G(− log(ud)))

)
. (2.1)

We will denote by B�,G the multivariate aging function corresponding to the copula
�d , namely

B�,G(u) = exp
(
−G

−1
(G(− log(u1)) · · · G(− log(ud)))

)
. (2.2)

The function BF is an object allowing us to define certain aging properties of F
(see [6,9,16]). It is obtained by transforming the copula KF by means of the bijection
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G ◦ (− log) of I. Transformations of this type are known as distortions of copulas
(see [10,14,21] and the references therein).

Notice that whereas a copula K is a probability distribution function (concentrat-
ing the probability mass on I

d), a multivariate aging function B might not be of this
type. In fact, B satisfies the following properties:

(B1) B(u) = ui for any u ∈ I
d having all the components equal to 1 except possibly

for the ith one.

(B2) B is increasing in each variable.

However, B need not be d-increasing; in other words, B is a semicopula but not
necessarily a copula (see, e.g., [9,15,16]).

In the sequel, we use the term “multivariate aging function” to denote any con-
tinuous function B : I

d → I satisfying (B1) and (B2) that can be obtained from some
survival function F by means of (1.1). Note that every copula K is a multivariate
aging function, since it can be obtained as the multivariate aging function of a survival
function F having copula K and univariate survival marginal G(t) = exp(−t).

Within the family of the multivariate aging functions, we define the follow-
ing classes; as we will see, these classes will be used to express our multivariate
aging notions.

Definition 2.1: Let B be a multivariate aging function. We say that:

(A1) B ∈ A +
1 if, and only if, for every u ∈ I

d,

B(u1, . . . , ud) ≥ �d(u1, . . . , ud). (2.3)

(A2) B ∈ A +
2 if, and only if, for all i, j ∈ {1, . . . , d}, i �= j, and for every u ∈ I

d,

B(u1, . . . , ui, . . . , uj, . . . , ud) ≥ B(u1, . . . , uiuj, . . . , 1, . . . , ud). (2.4)

(A3) B ∈ A +
3 if, and only if, for all i, j ∈ {1, . . . , d}, i �= j, for all ui, uj ∈ I, ui ≥ uj,

and for every s ∈ (0, 1),

B(u1, . . . , uis, . . . , uj, . . . , ud) ≥ B(u1, . . . , ui, . . . , ujs, . . . , ud). (2.5)

The corresponding classes A −
i (i = 1, 2, 3) are defined by reversing the inequality

signs in (2.3), (2.4), and (2.5), respectively.

The property of (2.3) is a pointwise comparison between the multivariate aging
function B and the copula �d . In particular, copulas satisfying (2.3) are called positive
lower orthant dependent (see [25]). Properties expressed in (2.4) and (2.5) are essen-
tially inequalities related to the bivariate sections of B. In particular, (2.5) consists of
the supermigrativity (compare with [11]) of all the bivariate sections of B, whereas
(2.4) is one of its weaker forms, obtained by letting ui = 1 and s = 1/uj in (2.5).
Therefore, A +

3 ⊆ A +
2 ; however, the converse inclusion is not true, as will be shown

in Example 2.4.



AGING FUNCTIONS AND MULTIVARIATE NOTIONS 267

Furthermore, A +
2 ⊆ A +

1 . In fact, by iteratively applying (2.4), we obtain that,
for every u ∈ I

d ,

B(u1, . . . , ui, . . . , uj, . . . , uk , . . . , ud)

≥ B(u1, . . . , uiuj, . . . , 1, . . . , uk , . . . , ud)

≥ B(u1, . . . , uiujuk , . . . , 1, . . . , 1, . . . , ud) ≥ . . .

≥ B(1, . . . , u1 · · · ud , . . . , 1)

= u1 · · · ud .

Since a multivariate aging function satisfies (B1), B ∈ A +
2 is equivalent to B ∈ A +

1
for the case d = 2. However, in the d-dimensional case, d ≥ 3, A +

2 is strictly included
in A +

1 , as it will be shown in Example 2.3.
In the following example, we consider the case of the so-called time-transformed

exponential (TTE) models (see [3,29]). These models can be characterized as those
multivariate survival functions admitting an Archimedean survival copula.

Example 2.2: Let B be a multivariate aging function that can be written in the form

B(u) = ψ−1

(
d∑

i=1

ψ(ui)

)
(2.6)

for some strictly decreasing ψ : I → R+ such that ψ(0) = +∞ and ψ(1) = 0. This
ψ is usually called additive generator of B. Such a B belongs to the class of the d-
dimensional strict triangular norms (see [20]). In particular, B is also a copula (usually
called strict Archimedean copula) when ψ−1 is d-completely monotone (see [24]).
Now, for a semi-copula B of type (2.6), the following statements can be proved:

(i) B ∈ A +
1 if, and only if, B ∈ A +

2 , and this happens when ψ(uv) ≤ ψ(u) +
ψ(v) for all u, v ∈ I.

(ii) B ∈ A +
3 if, and only if, ψ−1 is log-convex (see [9,11]).

Notice that the multivariate aging functions B�,G of (2.2) are of the form (2.6), with
ψ(t) = − log(G(− log(t))).

We conclude this section by providing some examples clarifying the relations
among the above-mentioned classes.

Example 2.3: Let f : I → I be the function given by

f (t) =

⎧⎪⎨⎪⎩
et, t ∈ [0, e−2]
e−1, t ∈ ]e−2, e−1]
t t ∈ ]e−1, 1].

Let C : I
3 → I be given by C(u1, u2, u3) = u(1)f (u(2))f (u(3)), where u(1), u(2), and

u(3) denote the components of u rearranged in increasing order. Since f (1) = 1, f is
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increasing, and f (t)/t is decreasing on ]0, 1], it follows that C is a copula (see [13, Thm.
3]). Actually, C is the survival copula of a random vector (X1, X2, X3) having the
stochastic representation Xi = max(Yi, Z) (i = 1, 2, 3), where Y1, Y2, Y3, and Z are
independent lifetimes. Roughly speaking, C is the survival copula of a random vector
of independent lifetimes (Y1, Y2, Y3) affected by a common shock Z (see also [12]).

If follows from [13] that C belongs to A +
1 . However, C /∈ A +

2 . In fact, by tak-
ing u1 = e−(5/2), u2 = e−(3/2), and u3 = e−(1/2), we have that C(u1, u2, u3) = e−4 <

e−(7/2) = C(u1, u2u3, 1).

Example 2.4: Let B be the multivariate aging function of type (2.6), where ψ : I →
R+ is given by

ψ(t) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
− log(t), t ∈ ]0, e−2−ε]
− ε

1 + ε
(log(t) + 1) + 2, t ∈ ]e−2−ε, e−1]

−2 log(t), t ∈ ]e−1, 1],

with ε ∈ ]0, 1[. Now, let us consider g : R+ → R+, g(t) = ψ(exp(−t)), given by

g(t) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
2t, t ∈ [0, 1]

ε

1 + ε
(t − 1) + 2, t ∈ (1, 2 + ε]

t, t ∈ (2 + ε, +∞[.

Now, g is not concave and, hence, ψ−1 is not log-convex. Thus, in view of Example
2.2, B /∈ A +

3 . However, it can be shown that ψ(uv) ≤ ψ(u) + ψ(v) for all u, v ∈ I.
From Example 2.2, it follows that B ∈ A +

2 .

3. MULTIVARIATE AGING NOTIONS OF NBU AND IFR FOR
EXCHANGEABLE RANDOM VARIABLES

In this section, the families A +
1 , A +

2 , and A +
3 will be used in order to define notions of

positive aging in terms of the multivariate aging function B. Notice that since negative
properties can be introduced and studied in a similar way, they will not be considered
in detail.

First, we recall the following notions of univariate aging for a survival func-
tion G:

• G is NBU if, and only if, for all x, y ∈ R+, G(x + y) ≤ G(x)G(y).

• G is IFR if, and only if, G is log-concave.

As stated in Section 1, we aim at extending an aging notion from the univariate
case to the d-dimensional case (d ≥ 2), following the line of [6]. To this end, we link
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univariate aging notions to analytical properties of a multivariate aging function. More
precisely, we link properties of a survival function G to properties of the multivariate
aging function B�,G, which is associated with d i.i.d. lifetimes whose marginal survival
function is G. The following result can be given.

Proposition 3.1: Under Assumption 2, the following statements are equivalent:

(a) G is NBU.

(b) B�,G ∈ A +
1 .

(c) B�,G ∈ A +
2 .

Proof:

(a)⇐⇒(b): Let G be NBU. It can be proved by induction that for all x, y ∈ R+,
G(x + y) ≤ G(x)G(y) is equivalent to

G

(
d∑

i=1

xi

)
≤

d∏
i=1

G(xi),

for any x ∈ R
d
+. Setting xi = − log(ui), we obtain that for all u ∈ I

d ,

G(− log(u1 · · · ud)) ≤ G(− log(u1)) · · · G(− log(ud)), (3.1)

from which it straightforwardly follows that

exp
(
−G

−1
(G(− log(u1 · · · ud)))

)
≤ exp

(
−G

−1
(G(− log(u1)) · · · G(− log(ud)))

)
(i.e., B�,G ≥ �d).

(a)⇐⇒(c): Since G is NBU, G(− log(uiuj)) ≤ G(− log(ui))G(− log(uj))

holds for all ui, uj ∈ I. By multiplying both the sides of the inequality by∏
k∈I

G(− log(uk)), where I = {1, 2, . . . , d} \ {i, j} and uk ∈ I for every k ∈ I

and applying the function exp ◦(−G
−1

) to both members, we obtain

B�,G(u1, . . . , ui, . . . , uj, . . . , ud) ≥ B�,G(u1, . . . , uiuj, . . . , 1, . . . , ud)

(i.e., B�,G ∈ A +
2 ). �

Therefore, we can write A +
1 ∩ {B�,G : G is NBU} = A +

2 ∩ {B�,G : G is NBU}.
Notice that, in general, A +

1 �= A +
2 .

Proposition 3.2: Under Assumption 2, the following statements are equivalent:

(a) G is IFR.

(b) B�,G ∈ A +
3 .



270 F. Durante. R. Foschi, and F. Spizzichino

Proof: Let G be IFR. As it easily follows, this fact is equivalent to

G(xi + σ)

G(xi)
≥ G(xj + σ)

G(xj)
,

for any xi, xj ∈ R+, xi ≤ xj and σ ≥ 0. By substituting xi = − log(ui), xj = − log(uj),
and σ = − log(s), we obtain

G(− log(uis))G(− log(uj)) ≥ G(− log(ujs))G(− log(ui)),

for any ui, uj ∈ (0, 1], ui ≥ uj and s ∈ (0, 1). By multiplying both the sides of the
inequality by

∏
k∈I G(− log(uk)), where I = {1, 2, . . . , d} \ {i, j} and uk ∈ I for

every k, ∈ I and applying the function exp ◦(−G
−1

) to both the members, we obtain

B�,G(u1, . . . , uis, . . . , uj, . . . , ud) ≥ B�,G(u1, . . . , ui, . . . , ujs, . . . , ud)

(i.e., B�,G ∈ A +
3 ). �

The previous proposition is actually a reformulation in terms of the multivariate
aging function of well-known results concerning the joint survival function F = F�,G
of i.i.d. lifetimes that are IFR. As noted several times in the literature (see, e.g.,
[2,3,29]), such a F is Schur-concave; that is, for every s ≥ 0 and for every i, j ∈
{1, 2, . . . , d}, i < j, the mapping

xi 
−→ F(x1, . . . , xi−1, xi, xi+1 . . . , xj−1, s − xi, xj+1, . . . , xd)

is decreasing on [s/2, +∞] (see [23, A.2.b]). This is equivalent to

F(x1, . . . , xi + τ , . . . , xj − τ , . . . , xd) ≥ F(x1, . . . , xi, . . . , xj, . . . , xd) (3.2)

for all i, j ∈ {1, 2, . . . , d}, i < j, for every x ∈ R
d
+ such that xi ≤ xj, and for every

τ ∈ [0, xj − xi].

Remark 3.3: As noted, B�,G is actually a d-dimensional strict triangular norm addi-
tively generated by ψ = (− log) ◦ G ◦ (− log). In this context, Propositions 3.1
and 3.2 can be reinterpreted in the following sense: Univariate aging properties of
ψ−1, which is a univariate survival function, reflect on special inequalities holding
for the triangular norm generated by ψ . As a consequence, these results can be seen
as extensions of the investigations in [1].

Now, by using Propositions 3.1 and 3.2 and the scheme presented in Section 1,
we introduce the following notions of multivariate aging for an exchangeable survival
function F.
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Definition 3.4: Under Assumption 1, we say the following:

• F is B-multivariate-NBU of the first type (B-MNBU1) if, and only if, BF ∈ A +
1 .

• F is B-multivariate-NBU of the second type (B-MNBU2) if, and only if,
BF ∈ A +

2 .

• F is B-multivariate-IFR (B-MIFR) if, and only if, BF ∈ A +
3 .

In order to avoid confusion with other multivariate notions of aging introduced
in the previous literature, we used the prefix B for the notions introduced above. This
also serves to underline the fact that all of these notions are expressed in terms of the
multivariate aging functions B of F. Now, we would like to investigate some properties
of these notions.

First, notice that any k-dimensional marginal of F (2 ≤ k ≤ d − 1) has the same
multivariate aging property of F. This point is formalized in the following result.

Proposition 3.5: Suppose that Assumption 1 holds. For every 2 ≤ k ≤ d, let F
(k)

be the k-dimensional marginal of F. If F is B-MNBU1 (respectively, B-MNBU2 or

B-MIFR), then F
(k)

is B-MNBU1 (respectively, B-MNBU2 or B-MIFR).

Proof: If F
(k)

: R
k
+ → I is the k-dimensional margin of F (2 ≤ k ≤ d), given by

F
(k)

(x1, . . . , xk) = F(x1, . . . , xk , 0, . . . , 0),

then it follows from (2.1) that

B
F

(k) (u1, . . . , uk) = BF(u1, . . . , uk , 1, . . . , 1).

Easy calculations show that B
F

(k) is in A +
1 (respectively, A +

2 or A +
3 ) when BF is in

A +
1 (respectively, A +

2 or A +
3 ), which is the desired assertion. �

The previous definitions of multivariate aging admit some probabilistic inter-
pretations in terms of conditional survival probabilities for residual lifetimes. Before

stating them, we clarify the notation. For every x ∈ R
d
+ we denote by x̂i the vector of

R
d−1
+ obtained by depriving x of its ith component. Similar agreement will be applied

to random vectors.

Proposition 3.6: Under Assumption 1, the following statements hold:

(a) F is B-MNBU1 if, and only if, for every i ∈ {1, 2, . . . , d}, x ∈ R
d
+ and τ > 0,

P(X1 > x1, . . . , Xi > xi + τ , . . . Xd > xd | Xi > xi)

≥ P(Xi > x1 + . . . + xi + . . . + xd + τ | Xi > xi). (3.3)
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(b) F is B-MNBU2 if, and only if, for all i, j ∈ {1, 2, . . . , d}, i �= j, for every x̂j ∈
R

d−1
+ and τ > 0,

P(Xj > τ | X̂j > x̂j) ≥ P(Xi > τ + xi | X̂j > x̂j). (3.4)

(c) F is B-MIFR if, and only if, for all i, j ∈ {1, 2, . . . , d}, for every x ∈ R
d
+ such

that xi ≤ xj, and for every τ > 0,

P(Xi > xi + τ | X > x) ≥ P(Xj > xj + τ | X > x). (3.5)

Proof:

(a) By definition, F is B-MNBU1 if, and only if, for every u ∈ I
d ,

exp
(

G
−1

(F(− log(u1), . . . , − log(ud)))
)

≥ u1 · · · ud .

Thus, for every x ∈ R
d
+, we have that

F(x1, . . . , xd) ≥ G(x1 + · · · + xd), (3.6)

which is equivalent to the fact that Eq. (3.3) holds.

(b) Since F is B-MNBU2, for all i, j ∈ {1, . . . , d}, i �= j, and for every u ∈ I
d ,

exp
(

G
−1

(F(− log(u1), . . . , − log(ui), . . . , − log(uj), . . . , − log(ud)))
)

≥ exp
(

G
−1

(F(− log(u1), . . . , − log(uiuj), . . . , 1, . . . , − log(ud)))
)

,

which is equivalent to

F(x1, . . . , xi, . . . , τ , . . . , xd) ≥ F(x1, . . . , τ + xi, . . . , 0, . . . , xd) (3.7)

for all x̂i ∈ R
d−1
+ and τ > 0. This last condition can be expressed as

P(Xj > τ | X1 > x1, . . . , Xi > xi, . . . , Xj > 0, . . . , Xd > xd)

≥ P(Xi > τ + xi | X1 > x1, . . . , Xi > xi, . . . , Xj > 0, . . . , Xd > xd),

which is the desired assertion.

(c) We just have to prove that F is B-MIFR if, and only if, F is Schur-concave.
Then the assertion will follow, since the Schur-concavity of F is equivalent
to the fact that Eq. (3.5) holds (see [28,29, Prop. 4.15]).

Now, the equivalence between F being B-MIFR and F being Schur-
concave follows by extending [9, Lemma 4.2] from the bivariate to the d-
dimensional case. In detail, F is Schur-concave if, and only if, for all i, j ∈
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{1, 2, . . . , d}, i < j, for every x ∈ R
d
+ such that xi ≤ xj, and for every τ ∈

[0, (xj − xi)/2], inequality (3.2) holds. In terms of BF , this is equivalent to

BF(e−x1 , . . . , e−xi−τ , . . . , e−xj+τ , . . . , e−xd )

≥ BF(e−x1 , . . . , e−xi , . . . , e−xj , . . . , e−xd ). (3.8)

In other words,

BF(u1, . . . , uis, . . . , uj/s, . . . , ud) ≥ BF(u1, . . . , ud), (3.9)

for all i, j ∈ {1, 2, . . . , d}, i < j, for every u ∈ ]0, 1]d such that ui ≥ uj, and
for every s ∈ [uj/ui, 1], which is an equivalent way of expressing the fact that
BF ∈ A +

3 . �

Note that conditions (3.4) and (3.5) can be expressed as comparisons between
residual lifetimes, conditionally on a same history. Specifically, the condition F being
B-MNBU2 is equivalent to[

Xi | X̂i > x̂i

]
≥st

[
Xj − xj | X̂i > x̂i

]
, (3.10)

for all i, j ∈ {1, 2, . . . , d}, i �= j, and for every x ∈ R
d
+, where ≥st denotes the univariate

usual stochastic order (see [26]). Instead, the fact that F is B-MIFR can be expressed as

[Xi − xi | X > x] ≥st [Xj − xj | X > x], (3.11)

for all i, j ∈ {1, 2, . . . , d}, for every x ∈ R
d
+ such that xi ≤ xj.

Comparisons of laws of different lifetimes, conditionally on the same state of
information, have been considered in [4,5] as a way for defining possible notions
of multivariate aging that are appropriate in situations where “the (Bayesian) depen-
dence due to learning about some unobservable quantity cannot be neglected” (see [4]).
Notions of multivariate aging introduced in this way are different from the ones intro-
duced by comparing the laws of the same vector of surviving components, conditional
on two different states of information (see, e.g., [22,26] and the references therein).

Thanks to the probabilistic interpretations given by (3.10) and (3.11), an interest-
ing link between B-MNBU2 and B-MIFR can be proved. Let us consider the vector of
the residual lifetimes of X at time t > 0, Xt = [X − t | X > t], where t = (t, . . . , t).

Let us denote by Ft : R
d
+ → I the joint survival function of Xt and by BFt

the cor-
responding multivariate aging function. By extending some results related to the
bivariate case (see [7–9,18]), the following one can be proved.

Proposition 3.7: Under Assumption 1, for every t ≥ 0, Ft is B-MNBU2 if, and only
if, F is B-MIFR.
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Proof: Ft is B-MNBU2 for every t ≥ 0 if, and only if,

F(x1 + t, . . . , xi + t, . . . , xj + t, . . . , xd + t)

≥ F(x1 + t, . . . , t, . . . , xj + xi + t, . . . , xd + t)

for every t ≥ 0, x ∈ R
d
+ and i, j ∈ {1, 2, . . . , d}, which is equivalent to the fact that F

is Schur-concave. �

Note that if F is B-MNBU2, then Ft might not be B-MNBU2 for some t > 0
(see [17] for an example in the bivariate case). However, for the notion of B-MIFR,
we can prove the following result.

Corollary 3.8: Under Assumption 1, if F is B-MIFR, then Ft is B-MIFR for every
t ≥ 0.

Proof: From Proposition 3.7, if F is B-MIFR, then Ft+s is B-MNBU2 for every
t, s ≥ 0. As a consequence, Ft is B-MIFR for every t ≥ 0. �

Concerning inequality (3.3), it is not clear whether it can also be expressed as
comparison of lifetimes conditionally on the same history, in a similar way to the
inequalities in (3.10) and (3.11). However, it is possible to give it an intuitive inter-
pretation in reliabilistic terms, similarly to what was done in [9, Example 4.2] for the
case d = 2.

Remark 3.9: Notice that inequality (3.4) implies inequality (3.3); this can be seen
from Section 2 by using the multivariate aging function BF and the given definitions of
B-MNBU1 and B-MNBU2.Actually, as shown in Example (2.2), inequalities (3.4) and
(3.3) coincide for TTE models but not in general. Consider, for instance, a multivariate
survival function F whose marginals are exponential and whose copula is the one of
Example 2.3.

The notions of multivariate aging introduced in Definition 3.4 are preserved under
mixtures, as specified by the following proposition.

Proposition 3.10: Let (Fθ )θ∈� be a family of survival functions satisfying Assumption
1. Let λ be a distribution on �. Let F be the mixture of (Fθ )θ∈� with respect to λ,

given, for every x ∈ R
d
+, by

F(x) =
∫

�

Fθ (x) dλ(θ).

The following statements hold:

(a) If Fθ is B-MNBU1 for every θ ∈ �, then F is B-MNBU1.
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(b) If Fθ is B-MNBU2 for every θ ∈ �, then F is B-MNBU2.

(c) If Fθ is B-MIFR for every θ ∈ �, then F is B-MIFR.

Proof: Part (a) follows by considering that every Fθ satisfies (3.6) and hence the
mixture F satisfies (3.6), which is an equivalent formulation of the B-MNBU1 property
for F. Analogously, part (b) easily follows from the fact that every Fθ satisfies (3.7).

Finally, if every Fθ is B-MIFR, then it is Schur-concave. As a consequence, the
mixture F is also Schur-concave and, therefore, B-MIFR (see [23]). �

Consequently, the following result can be easily derived.

Proposition 3.11: Under Assumption 1, suppose that F is the survival function of con-
ditionally i.i.d. lifetimes given a common factor � with prior distribution λ. Moreover,
suppose that G(· | θ) is NBU (respectively, IFR). Then F is B-MNBU2 (respectively,
B-MIFR).

Thus, the given definitions of multivariate aging have an interesting property:
Mixtures of i.i.d. lifetimes that are NBU (respectively, IFR) conditionally on the same
factor � are also multivariate NBU (respectively, IFR).

4. DISCUSSION AND CONCLUDING REMARKS

In this article, we have presented an extension to the d-dimensional case (d ≥ 2) of
bivariate aging notions discussed in [6,9].

An interesting point concerns the extension of the NBU property, that, for the
multivariate case d ≥ 3, can lead us to two different formulations. In fact, this happens
when the components of F are coupled by a copula KF outside the Archimedean class
(see Example 2.2).

Here, it should be considered that, following the scheme (i)–(iii) presented in
Section 1, it is possible that several properties of B�,G describe the same bivariate
aging of a joint survival function F�,G of independent components. In [9], for instance,
different notions of bivariate IFR have been discussed. When such situations occur,
it is quite natural to consider all of these different multivariate notions of a given
univariate aging property P and select among them those properties of B�,G with
some interesting probabilistic meaning.

Also for these reasons, we wanted to stress that in this article the introduced
multivariate aging notions exhibit some particular features: they are closed under
mixtures and can be characterized in terms of comparisons of conditional survival
functions given a same observed history.

Finally, we would like to discuss a possible application of our results to the
construction of multivariate stochastic models. To this end, we present the following
proposition, which extends some results in [9] to the multivariate case.
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Proposition 4.1: Under Assumption 1, the following statements hold:

(a) If K ∈ A +
1 and G is NBU, then F is B-MNBU1.

(b) If K ∈ A +
2 and G is NBU, then F is B-MNBU2.

(c) If K ∈ A +
3 and G is IFR, then F is B-MIFR.

Proof:

(a) Let K ∈ A +
1 . Then, for every u ∈ I

d ,

exp
(
−G

−1 (
K(G(− log(u1)), . . . , G(− log(ud)))

)) ≥ B�,G(u1, . . . , ud).

By considering (2.1) and Proposition 3.1(a), it follows that B ∈ A +
1 .

(b) Let K ∈ A +
2 . Then, for every u ∈ I

d ,

G
(
− log

(
B
(

e−G
−1

(u1), . . . , e−G
−1

(ui), . . . , e−G
−1

(uj), . . . , e−G
−1

(ud )
)))

≥ G
(
− log

(
B
(

e−G
−1

(u1), . . . , e−G
−1

(uiuj), . . . , 1, . . . , e−G
−1

(ud )
)))

≥ G
(
− log

(
B
(
e−G

−1
(u1), . . . , e−(G

−1
(ui)+G

−1
(uj)), . . . , 1, . . . , e−G

−1
(ud )

)))
,

where the last inequality follows from the fact that G is NBU. Setting xi =
e−G

−1
(ui), it follows that B ∈ A +

2 , which is the desired assertion.

(c) Since K ∈ A +
3 , for every u ∈ I

d such that ui ≥ uj and for every s ∈ (0, 1),

K(u1, . . . , uis, . . . , uj, . . . , ud) ≥ K(u1, . . . , ui, . . . , ujs, . . . , ud).

In particular, for every 0 < sj ≤ si < 1,

K(u1, . . . , uisi, . . . , uj, . . . , ud) ≥ K(u1, . . . , ui, . . . , ujsj, . . . , ud). (4.1)

Now, for every k ∈ {1, 2, . . . , d}, set

αk = G
−1

(uk), si = G(αi + σ)

G(αi)
, sj = G(αj + σ)

G(αj)
,

where σ = G
−1

(uisi) − G
−1

(ui) = G
−1

(ujsj) − G
−1

(uj). Since G is IFR,
si ≥ sj. Moreover, from (4.1) we obtain

K
(
G(α1), . . . , G(αi + σ), . . . , G(αj), . . . , G(αd)

)
≥ K

(
G(α1), . . . , G(αi), . . . , G(αj + σ), . . . , G(αd)

)
.
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By applying to both the sides of this inequality the transformation
exp ◦(−G

−1
), we have

B(x1, . . . , xis
′, . . . , xj, . . . , xd) ≥ B(x1, . . . , xi, . . . , xjs

′, . . . , xd),

for every x ∈ I
d such that xi ≥ xj and for every s′ ∈ (0, 1), that is

BF ∈ A +
3 . �

Remark 4.2: As already noted, both the conditions K ∈ A +
2 and K ∈ A +

3 imply that
K ∈ A +

1 , which is considered a notion of multivariate positive dependence. Thus,
roughly speaking, Proposition 4.1 suggests that positive univariate aging and (some
kind of) positive dependence play in favor of positive multivariate aging. However,
note that positive multivariate aging can coexist with several forms of dependence
and univariate aging. This fact was already stressed, for example, in [9].

Interestingly (at least for some statistical purposes), Proposition 4.1 can be used
when one wants to construct, for components judged to be similar, a multivariate
survival model satisfying some kind of aging condition. In fact, by using the celebrated
Sklar’s theorem [27], such a model can be constructed just by conveniently choosing
some univariate survival function G (e.g., satisfying NBU or IFR property) and a
suitable copula K (belonging to some class A +

i ); hence, we join them in order to
obtain the multivariate survival function F = K(G, . . . , G). Hence, this procedure
provides sufficient conditions for multivariate aging in terms of univariate aging and
stochastic dependence.
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