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Università degli Studi di Roma “La Sapienza”, I-00185 Rome, Italy

e-mail: foschi@mat.uniroma1.it

Department of Knowledge-Based Mathematical Systems
Johannes Kepler University, A-4040 Linz, Austria

e-mail: peter.sarkoci@jku.at, peter.sarkoci@gmail.com

Received: December 17, 2008. Accepted: May 7, 2009

Abstract

Given a copula C, we examine under which conditions on an order
isomorphism ψ of [0, 1], the distortion Cψ : [0, 1]2 → [0, 1], Cψ(x, y) =
ψ(C(ψ−1(x)), ψ−1(y)), is again a copula. In particular, when the cop-
ula C is totally positive of order 2, we give a sufficient condition on
ψ which ensures that any distortion of C by means of ψ is again a
copula. The presented results allow us to introduce in a more flexible
way families of copulas exhibiting different behaviour in the tails.
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1 Introduction

A (bivariate) copula is a distribution function on I2 = [0, 1]2 whose univariate
margins are uniformly distributed. Copulas have received a great popularity
due to the celebrated Sklar’s Theorem, stating that every bivariate distribu-
tion function can be represented by means of some suitable copula and its
marginal distribution functions. For an introduction to copula theory and
some of its applications, we refer to Schweizer and Sklar (2006); Joe (1997);
Nelsen (2006); McNeil et al. (2005); Salvadori et al. (2007).

The growing importance of copulas in statistical models has originated
several methods for generating new classes of such functions. The final
goal of these investigations is to obtain more flexible families of multivariate
distribution functions, having a variety of interesting properties like tail
dependencies, asymmetries, wide range of association.

In this paper, we concentrate our attention on a transformation acting
on bivariate copulas. Given a copula C and an increasing bijection ψ : I → I,
we consider the function Cψ : I2 → I defined by

Cψ(x, y) = ψ(C(ψ−1(x), ψ−1(y))). (1.1)

Such a transformation has been considered several times in the literature,
under different names like distortion or transformation of a copula by means
of ψ. It has originated from the study of distorted probability distribution
functions (especially, power distortions), and has been considered by several
authors like Frees and Valdez (1998); Durrleman et al. (2000); Genest and
Rivest (2001); Durante and Sempi (2005a); Klement et al. (2005b,a); Mo-
rillas (2005); Charpentier (2008); Alvoni et al. (2009). In reliability theory,
Bassan and Spizzichino (2005b,a) studied this kind of transformation in or-
der to introduce the so-called bivariate ageing function that is used for the
definition of bivariate notion of ageing (see, also, Durante and Spizzichino
(2009); Nappo and Spizzichino (2009)). Crane and van der Hoek (2008) used
distortions of copulas to produce a heavy tailed portfolio loss distribution
in the context of synthetic Collateralized Debt Obligations (CDOs).

The study of distortions is of general interest since they can be used for
generating, in a flexible way, new families of copulas. In order to do this,
we need conditions on ψ warranting that, for a given C, Cψ is still a copula.
Moreover, it would be also of interest to investigate how some dependence
properties of C change or are preserved under these distortions.

The paper is organized as follows. In section 2, we revisit the distortion
of copulas from a new perspective, which includes the results obtained in the
literature. In sections 3 and 4, we mainly focus on some statistical aspects
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of copulas. In particular, in section 3, the TP2 property is studied, both
as a dependence property and for its implications on the preservation of
the 2-increasing property under distortion. In section 4, dependence on the
tails of the copula is investigated. More precisely, we analyze how the tail
dependence properties are modified under distortions. These results will
show the usefulness of distortion for generating flexible statistical models.
The presented results may be seen in the frame of the more general case of
distorted probabilities. Section 5 is devoted to some comments clarifying
this possible extension.

2 Revisiting distortions of copulas

A large part of literature about distortions mainly focuses on the determi-
nation of the class of all increasing bijections ψ such that the mapping given
by eq. (1.1) transforms any copula C into another copula. Here we are
rather interested in the (generally, larger) class of all increasing bijections ψ
such that, for a given copula C, Cψ is still a copula.

Before revisiting the notion of distortion, we introduce some notations
that will be useful in the rest of the paper.

Definition 2.1. A mapping C : I2 → I is a copula if it satisfies the following
properties:

(C1) C is increasing in each variable,

(C2) C(x, 1) = C(1, x) = x for every x ∈ I,

(C3) C is 2-increasing, that is, for every x1, y1, x2, y2 ∈ I, it satisfies

V [C]([x1, x2]× [y1, y2])
= C(x1, y1) + C(x2, y2)− C(x1, y2)− C(x2, y1) ≥ 0.

Important examples of copulas are M(x, y) = min(x, y), Π(x, y) = xy
and W (x, y) = max(x+y−1, 0) describing, respectively, comonotone depen-
dence, independence and countermonotone dependence between two random
variables. The symbol C stands for the class of all copulas.

Within this paper, whenever we write rectangle, we mean a subset of the
unit square of type R = [x1, x2]× [y1, y2]. For a binary operation C : I2 → I
we define the C-volume of the rectangle R by

V [C](R) = C(x1, y1)− C(x2, y1)− C(x1, y2) + C(x2, y2).

3



Thus, any C : I2 → I is 2-increasing if each rectangle has a nonnegative
C-volume.

We call an order isomorphism any increasing bijective transformation
of I. The set of all order isomorphisms is denoted by I. If ψ is an order
isomorphism and C a mapping from I2 to I, then we call ψ-transform of C,
or ψ-distortion of C, the mapping Cψ : I2 → I defined by (1.1).

It is obvious that all the ψ-distortions of a copula C satisfy (C1) and
(C2), but not necessarily the 2-increasing property. Thus they are (contin-
uous) semi-copulas, but not necessarily copulas (see Bassan and Spizzichino
(2001, 2005b); Durante and Sempi (2005a,b)). From another point of view,
any of such distortions can be considered as the semi-copula associated with
a suitable distorted probability (as clarified by Durante and Spizzichino
(2009)).

Given C ∈ C, let I (C) be the set of all order isomorphisms which, being
applied to C, give rise to another copula. Precisely

I (C) = {ψ ∈ I |Cψ ∈ C}.

By the literature cited above, it is well known that, regardless of C, the
set I (C) contains Icx, the set of all convex bijections on I. However, as
a key observation stimulating this investigation, for a fixed copula C, the
inclusion of Icx into I (C) may be strict. For example, it is well known that
I (M) = I, while I (W ) = Icx (see, for example, Morillas (2005)).

Example 2.2. If C is an Archimedean copula with an additive generator
f : I → [0,+∞[, i.e.

C(x, y) = f (−1)(f(x) + f(y)), (2.1)

then I (C) consists of all ψ ∈ I such that f ◦ ψ−1 is convex.

Example 2.3. If C is an extreme value copula (see, e.g., Nelsen (2006)),
then I (C) also contains all the power functions ψ(t) = tα for every α > 0.

These facts spur us to investigate whether, fixed a copula C, it is possible
to construct the set I (C) or, at least, to find its elements that are not
convex. As we will see at the end of the section, these results will be useful
for constructing families of copulas starting with some fixed C.

For this end, we need some preliminary considerations.

Lemma 2.4. (Marshall and Olkin, 1979, Proposition 4.B.2) Let A be an
interval of R and let f : A → R. If f is convex and increasing, then, for
every a1, a2, a3, a4 ∈ A such that

a1 ≤ min(a2, a3) ≤ max(a2, a3) ≤ a4,
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and a1 + a4 ≥ a2 + a3, we have

f(a1) + f(a4) ≥ f(a2) + f(a3).

Then, we have to consider the following definition on I, which can be
obtained from Hardy et al. (1952).

Definition 2.5. Let ϕ,ψ be in I. We say that ϕ is less convex than ψ (and
we write ϕ ≤cx ψ) if ψ ◦ ϕ−1 is convex.

It can be shown quite easily, that the relation ≤cx is an ordering on I,
i.e. it is reflexive, transitive and antisymmetric. Moreover, we have that
ϕ ≤cx IdI if, and only if, ϕ is concave, and, analogously, IdI ≤cx ϕ if, and
only if, ϕ is convex, where IdI is the identity function on I. More results
about the convex ordering among probability distribution functions can be
derived from Chan et al. (1990), where different assumptions are given on
the functions ϕ and ψ (see also (Mehmet and Yalçın, 2007)), and from Müller
and Stoyan (2002) and Shaked and Shanthikumar (2007), where this order
is considered under different names (e.g., likelihood ratio order).

Here we would like just to stress that, by using the previous definition,
we have that ϕ ≤cx ψ if, and only if, ϕ ◦ ψ−1 is concave, i.e., for all c, d ∈ I
where c < d and for every y ∈ ]c, d]

ϕ ◦ ψ−1(y)− ϕ ◦ ψ−1(c)
y − c

≥ ϕ ◦ ψ−1(d)− ϕ ◦ ψ−1(c)
d− c

,

which is equivalent to the fact that

ϕ(x)− ϕ(a)
ϕ(b)− ϕ(a)

≥ ψ(x)− ψ(a)
ψ(b)− ψ(a)

(2.2)

holds for all a, b ∈ I where a < b and for every x ∈ ]a, b].
The following theorem is the main result of this section. It states a

closure property of the sets I (C) with respect to the afore-mentioned convex
ordering. It will allow us to single out further (non convex) isomorphisms
belonging to I (C), once we have found one.

Theorem 2.6. Let ϕ,ψ ∈ I such that ϕ ≤cx ψ. If ϕ is an element in I (C),
then so is ψ.

Proof. First note that, in order to prove that ψ ∈ I (C), it is enough to
verify the 2-increasingness of Cψ, as conditions (C1) and (C2) are trivially
preserved.
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If R = [x1, x2]×[y1, y2] is a rectangle of I2 and ψ is an order isomorphism,
we denote Rψ

−1
= [ψ−1(x1), ψ−1(x2)]× [ψ−1(y1), ψ−1(y2)]. Now, let C be a

copula. We denote by CRi,j = C(xi, yj), where i, j ∈ {1, 2}, the value that C
assumes on the vertex (xi, yj) of the rectangle R. We introduce the set

Rq(C) =
{
(CR1,1, C

R
1,2, C

R
2,1, C

R
2,2) ∈ I4 | R is a rectangle ,

}
that consists of all quadruples of values of C in the vertices of all possible
rectangles of I2. For every ψ ∈ I, it is not difficult to prove that

Rq(C) =
{
(CR

ψ−1

1,1 , CR
ψ−1

1,2 , CR
ψ−1

2,1 , CR
ψ−1

2,2 ) ∈ I4 | R is a rectangle
}
,

where, for i, j ∈ {1, 2}, CRψ
−1

i,j = C(ψ−1(xi), ψ−1(yj)) denotes the value
that C assumes on the vertex (ψ−1(xi), ψ−1(yj)) of the rectangle Rψ

−1
.

Therefore, in order to prove that ψ ∈ I is also an element of I (C), we only
have to prove that, for every (a, b, c, d) ∈ Rq(C),

ψ(a)− ψ(b)− ψ(c) + ψ(d) ≥ 0.

Now, let (a, b, c, d) be in Rq(C) and let ϕ ∈ I (C). Thanks to the
monotonicity of ϕ, we have

ϕ(a) ≤ min(ϕ(b), ϕ(c)) ≤ max(ϕ(b), ϕ(c)) ≤ ϕ(d).

Moreover, since ϕ ∈ I (C),

ϕ(a)− ϕ(b)− ϕ(c) + ϕ(d) ≥ 0.

From Lemma 2.4, this inequality is preserved when the following affine map-
ping Ta,d is applied to each term:

Ta,d : [ϕ(a), ϕ(d)] → [ψ(a), ψ(d)], x 7→ x− ϕ(a)
ϕ(d)− ϕ(a)

(ψ(d)− ψ(a)) + ψ(a).

Therefore, we obtain that(
Ta,d ◦ ϕ

)
(a)−

(
Ta,d ◦ ϕ

)
(b)−

(
Ta,d ◦ ϕ

)
(c) +

(
Ta,d ◦ ϕ

)
(d) ≥ 0.

We can check easily that
(
Ta,d ◦ ϕ

)
(a) = ψ(a) and

(
Ta,d ◦ ϕ

)
(d) = ψ(d).

Moreover, by assumption ϕ ≤cx ψ and, in particular, by (2.2), we have(
Ta,d ◦ ϕ

)
(b) ≥ ψ(b) and

(
Ta,d ◦ ϕ

)
(c) ≥ ψ(c).

Therefore also
ψ(a)− ψ(b)− ψ(c) + ψ(d) ≥ 0,

which is the desired assertion.

6



To put Theorem 2.6 differently, every I (C) is an upper set with respect
to convex ordering ≤cx .

As a consequence of Theorem 2.6, we may obtain the following result,
already known in the literature.

Corollary 2.7. For every C ∈ C, Icx ⊆ I (C).

Proof. Let C be a copula. Clearly IdI ∈ I (C). Moreover, by the definition
of the relation ≤cx and Theorem 2.6 it follows easily that IdI ≤cx ψ if and
only if ψ is convex.

The following theorem shows a further procedure to obtain members
of I (C), starting with two other members belonging to this class. The
result is based on the closure property of sets I (C) with respect to convex
combinations.

Theorem 2.8. Let C be a copula. If ϕ,ψ are members of I (C), then so is
αϕ+ (1− α)ψ for any α ∈ I.

Proof. The assumption ϕ,ψ ∈ I (C) is equivalent to

ϕ(CR1,1)− ϕ(CR1,2)− ϕ(CR2,1) + ϕ(CR2,2) ≥ 0,

ψ(CR1,1)− ψ(CR1,2)− ψ(CR2,1) + ψ(CR2,2) ≥ 0,

for every rectangle R. Multiplying the first inequality by α, the second one
by (1− α) and adding them up yields the inequality

%(CR1,1)− %(CR1,2)− %(CR2,1) + %(CR2,2) ≥ 0,

where % = αϕ+ (1− α)ψ. Since this inequality also holds for any rectangle
R, we have % ∈ I (C).

Summarizing, given a copula C and ψ ∈ I (C), Theorems 2.6 and 2.8 might
suggest two methods for constructing other elements in I (C):

• take all ϕ ∈ I such that ψ ≤cx ϕ,

• take all convex combinations between ψ and such a ϕ or any convex
ϕ ∈ I.

Both these methods may be applied for constructing families of copulas,
based on C, by means of suitable ψ-transforms as above. In particular, they
are “relevant” (i.e. do not produce just convex isomorphisms) when ψ or ϕ
is not convex. In the next, we will see a way to obtain a possibly not convex
ψ ∈ I (C).
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3 The TP2 property under distortions

This section aims at analysing how copulas satisfying a special dependence
property called TP2 can be transformed into other TP2 copulas by means
of suitable distortions. This fact is relevant from a statistical point of view:
it does mean that, starting with a given element in C, we can construct a
family of copulas sharing a strong dependence property. Furthermore, from
a more formal point of view, the preservation of the TP2 property guarantees
the preservation of the 2-increasing property.

First of all, we recall that, given two intervals A and B in R, a function
K : A×B → R is said to be totally positive of order 2 (shortly, TP2) if, for
any x1, x2, y1, y2 ∈ R such that x1 ≤ x2, y1 ≤ y2,

K(x1, y1)K(x2, y2) ≥ K(x1, y2)K(x2, y1). (3.1)

Analogously, K : A×B → R is said to be reverse regular of order 2 (shortly,
RR2) if (3.1) holds with the reverse inequality sign. For more details, see
Karlin and Rinott (1980a,b).

If K is a probability distribution or a survival function, then the TP2

(respectively, RR2) property of K corresponds to a strong notion of positive
(respectively, negative) dependence between the random variables, usually
called corner set monotonicity (compare with Harris (1970)). Moreover, it is
known that this dependence property can be expressed in terms of the TP2

(respectively, RR2) property of the copula associated with the distribution
function (see e.g. Nelsen (2006)).

Here, starting with a copula C satisfying the TP2 property, we would
like to find conditions on the transformation ψ such that Cψ is also TP2.
Preliminarily, we state the following result.

Lemma 3.1. Let C : I2 → I be increasing in each place. If C is TP2, then
it is 2-increasing.

Proof. Suppose that C is TP2. Then, for every x1, x2, y1, y2 in [0, 1], x1 ≤ x2

and y1 ≤ y2, we have that

C(x1, y1)C(x2, y2) ≥ C(x1, y2)C(x2, y1).

Because the logarithm function is strictly increasing, it follows that

logC(x1, y1) + logC(x2, y2) ≥ logC(x1, y2) + logC(x2, y1), (3.2)

i.e. logC is 2-increasing. Now, we recall that ifH is a 2-increasing and mono-
tonic function and φ is convex and increasing, then φ ◦H is monotonic and
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2-increasing (see (Marshall and Olkin, 1979, page 151)). In particular, by
applying this result to the exponential function and to the 2-increasing and
monotonic function log ◦C, we obtain that C = exp(logC) is 2-increasing,
which is the desired assertion.

Theorem 3.2. Let C be a TP2 copula. Let ψ ∈ I. If ψ ◦ exp: ]−∞, 0] →
[0, 1] is log-convex, then

(i) Cψ is TP2;

(ii) ψ ∈ I (C).

Proof. In order to prove (i), given a rectangle R = [x1, x2]× [y1, y2] of I2 we
set

aij = C(ψ−1(xi), ψ−1(yj)).

By definition every aij ∈ I and a11 ≤ min(a12, a21) ≤ max(a12, a21) ≤ a22.
Since C is TP2, it follows that a11a22 ≥ a12a21, which implies

log a11 + log a22 ≥ log a12 + log a21. (3.3)

Now, by assumption γ : ]−∞, 0] → ]−∞, 0], γ(t) = log(ψ(et)) is convex and
increasing, and, by applying Lemma 2.4 to each term of inequality (3.3), we
obtain

log(ψ(a11)) + log(ψ(a22)) ≥ log(ψ(a12)) + log(ψ(a21)),

which, in its turn, implies

ψ(a11)ψ(a22) ≥ ψ(a12)ψ(a21). (3.4)

Thus, Cψ is TP2. Finally, from Lemma 3.1 it follows that Cψ is also 2-
increasing and, since Cψ satisfies also conditions (C1) and (C2) of Definition
2.1, Cψ is a copula.

Note that the condition log ◦ψ ◦ exp convex is sometimes referred to as
geometric convexity of ψ (compare with Saminger-Platz et al. (2008)).

Remark 3.3. Log-convexity also plays a key role in characterizing univari-
ate ageing notions. For example, we say that a survival distribution function
F is Decreasing Failure Rate (DFR) when it is log-convex (compare, e.g.,
with Lai and Xie (2006)). This means that we might construct isomorphisms
ψ that satisfy the assumptions of Theorem 3.2 just by taking ψ = F ◦(− log),
where F is a suitable DFR survival distribution. By using this fact, we can
obtain the following examples corresponding to (versions of) Weibull, Gom-
pertz and Lomax survival distribution functions:
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• ψ(t) = exp (−(− log(t))α), where α ∈]0, 1];

• ψ(t) = exp
(
−α− log(t)−1

log(α)

)
, where α ∈ ]0, 1];

• ψ(t) = (1− log(t))−α, where α > 0.

For a fixed C, the sufficient condition of Theorem 3.2 need not be nec-
essary. In fact, the copula M is TP2 and it coincides with any of its trans-
formation Mψ, apart from the properties of ψ ∈ I. However, for the class
of strict Archimedean copulas, which can be obtained as a distortion of the
copula Π, we have the following characterization.

Corollary 3.4. Let ψ ∈ I. Then Πψ is a TP2 copula if, and only if, ψ ◦exp
is log-convex.

Proof. Suppose that Πψ is a TP2 copula. Then, Πψ = C is a strict Archi-
medean copula additively generated by f(t) = − log(ψ−1(t)). Now, it is
known from Proposition 6.1 by Bassan and Spizzichino (2005b) (compare
also with Avérous and Dortet-Bernadet (2004)) that C is TP2 if, and only if,
f−1 is log-convex, which is equivalent to t 7→ log(ψ(e−t)) convex on [0,+∞[,
that is ψ ◦ exp log-convex on ]−∞, 0].

Now, a remarkable fact is derived from Theorem 3.2 by considering that
every power function ψ ∈ I has the property that ψ ◦ exp is log-convex.

Corollary 3.5. Let C be a TP2 copula and ψ ∈ I, ψ(t) = tα for α > 0.
Then Cψ is a TP2 copula.

This observation is of a great importance since such transformations
allow us to construct several parametric families of copulas starting with a
known copula C that is TP2.

Example 3.6. For every θ ∈ [−1, 1], let us consider the Farlie-Gumbel-
Morgenstern family of copulas whose elements are given by

Cθ(x, y) = xy + θxy(1− x)(1− y). (3.5)

Every Cθ is TP2 when θ ∈ [0, 1]. Let us consider ψ(t) = tα for every α > 0
and the transformed copulas (Cθ)ψ, that we denote by Cα,θ. We have that

Cα,θ(x, y) = xy[1 + θ(1− x
1
α )(1− y

1
α )]α (3.6)

defines a family of copulas that are TP2 when θ ∈ [0, 1] (compare also with
Arnold et al. (2008)).
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Example 3.7. Let C be a semilinear copula (compare with Durante (2006);
Durante et al. (2008)), i.e. there exists f : I → I that is strictly increasing
and continuous with f(t)

t decreasing on ]0, 1] and f(1) = 1, such that

C(x, y) = min(x, y)f(max(x, y)).

Let us consider ψ(t) = tα for every α > 0. Since C is TP2, then Cψ is
a copula for every α > 0. Actually, the distorted copula Cψ is again a
semilinear copula generated by g(t) = fα(t1/α).

4 Tail dependence coefficients under distortions

A possible reason for adding new parameters to already known copulas lies
in producing families that exhibit some more flexible properties. In partic-
ular, copulas with different tail behaviour are usually required for building
stochastic models for estimating extreme and risky events (Joe, 1997; Mc-
Neil et al., 2005; Salvadori et al., 2007). In this section, we show how the
distortions of a given copula C may modify the tail behaviour of C, as
measured by its tail dependence coefficients. Specifically, we state formulas
linking the original tail dependence coefficients of C and the ones obtained
from some distortion of C.

We recall that, given two continuous random variables X and Y whose
distribution functions are FX and FY , respectively, the upper tail dependence
coefficient λU of (X,Y ) is defined by

λU = lim
t→1−

P
(
Y > F

[−1]
Y (t) | X > F

[−1]
X (t)

)
(4.1)

and the lower tail dependence coefficient λL by

λL = lim
t→0+

P
(
Y ≤ F

[−1]
Y (t) | X ≤ F

[−1]
X (t)

)
, (4.2)

provided that the above limits exist in I. These two coefficients, which are of
great importance in the study of a tail behaviour of a random pair (see Joe
(1997); Nelsen (2006)), can be represented in terms of the copula associated
with (X,Y ).

Proposition 4.1. Let X and Y be continuous random variables with copula
C. If λU and λL defined by (4.1) and (4.2) exist and take values in I, then

λL = lim
x→0+

C(x, x)
x

, (4.3)

λU = lim
x→1−

1− 2x+ C(x, x)
1− x

= 2− lim
x→1−

1− C(x, x)
1− x

. (4.4)
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Moreover, if λU and λL exist and are finite, then

λL = δ′C(0+) and λU = 2− δ′C(1−), (4.5)

where δC : I → I given by δC(x) = C(x, x) is the diagonal section of C.

Here we state our results related to the tail dependence coefficients of
the distorted copula.

Proposition 4.2. Let C be a copula such that λL(C) exists and is finite.
Let ψ ∈ I (C). If, for some α > 0,

lim
t→0+

ψ(t)
tα

= b ∈ ]0,+∞[.

Then λL(Cψ) = (λL(C))α.

Proof. Let C be a copula with diagonal section δC . If δC = 0 on [0, ε]
for a small ε > 0, then we easily obtain that λL(Cψ) = 0 = (λL(C))α.
Otherwise, suppose that δC is strictly increasing on [0, ε] for some small
ε > 0. Taking into account (4.3), the lower tail dependence coefficient for
Cψ can be expressed as

λL(Cψ) = lim
x→0+

ψ(C(x, x))
ψ(x)

= lim
x→0+

(
ψ(C(x, x))
[C(x, x)]α

· [C(x, x)]α

xα
· xα

ψ(x)

)
.

Therefore, from the given assumptions, λL(Cψ) = [λL(C)]α.

Proposition 4.3. Let C be a copula such that λU (C) exists and is finite.
Let ψ ∈ I (C). If, for some α > 0,

lim
t→1−

1− ψ(t)
(1− t)α

= b ∈ ]0,+∞[,

then λU (Cψ) = 2− (2− λU (C))α.

Proof. Let C be a copula with diagonal section δC . Then, δC is strictly
increasing on [1− ε, 1] for some small ε > 0.

By taking into account (4.5), the upper tail dependence coefficient of Cψ
can be expressed as

λU (Cψ) = 2− lim
x→1−

1− ψ(C(x, x))
1− ψ(x)

= 2− lim
x→1−

1− ψ(δC(x))
1− ψ(x)

.
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If, for some α > 0, limt→1−
1−ψ(t)
(1−t)α = b ∈ ]0,+∞[, then

lim
x→1−

1− ψ(δC(x))
1− ψ(x)

= lim
x→1−

(
1− ψ(δC(x))
(1− δC(x))α

· (1− δC(x))α

(1− x)α
· (1− x)α

1− ψ(x)

)
.

Therefore, λU (Cψ) = 2− (2− λU (C))α.

Example 4.4. For every θ ∈ [−1, 1], let us consider the Farlie-Gumbel-
Morgenstern family {Cθ} of copulas whose elements are given by (3.5). If
we consider ψ̃ ∈ I, ψ̃(t) = e−(− log t)α for every α ∈ ]0, 1[. It can be showed
that ψ̃ satisfies the assumptions of Theorem 3.2 and Proposition 4.3. Thus,
(Cθ) eψ is a modification of the Farlie-Gumbel-Morgenstern copula having,
additionally, upper tail dependence coefficient equal to 2− 2α.

For the case of strict Archimedean copulas, the above results can be
stated in the following simpler forms.

Corollary 4.5. Let C(x, y) = f−1(f(x) + f(y)) be an Archimedean copula
additively generated by f .

(i) If teαf(t) t→0+

−→ b ∈ ]0,+∞[ for some α > 0, then λL(C) = 0.

(ii) If 1−t
(1−e−f(t))α

t→1−−→ b ∈ ]0,+∞[ for some α > 0, then λU (C) = 2− 2α.

Proof. The proof follows easily by the Propositions 4.2 and 4.3 and by the
fact that any Archimedean copula C(x, y) = f−1(f(x) + f(y)) can be rep-
resented as a distortion Πψ of the independence copula Π (that has upper
and lower tail dependence coefficient equal to 0) with ψ = f−1 ◦ (− log).

More general results about the tail dependence coefficients of an Ar-
chimedean copulas are given by Juri and Wüthrich (2002, 2003) and Char-
pentier and Segers (2007, 2009) in terms of regularly varying properties of
the additive generator.

5 Concluding remarks

In previous sections, we have obtained several results concerning the so-
called distortions of a given copula. Here, we would like to clarify how these
results may be reformulated and reinterpreted in the more general context
of bivariate distribution functions.

We start by a simple observation. Let us consider a bivariate continuous
distribution function F and an order isomorphism ψ ∈ I. Suppose that
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Fψ = ψ ◦ F is a distribution function. If PF is the probability measure
generated by F on the Borel sets of R2, then Fψ is simply the distribution
function of the probability measure ψ ◦ PF . Generalized measures obtained
by means of the distortion of a probability measure are usually known as
distorted probabilities (Denneberg, 1994).

Now, let C be the copula of F . It is quite easy to prove that the copula
of Fψ is simply Cψ (see, e.g., Durante and Sempi (2005a)). Moreover, the
following result can be also stated.

Proposition 5.1. Let us consider a bivariate continuous distribution func-
tion F and an order isomorphism ψ ∈ I. Let C be the copula of F and let
PF be the probability measure induced by F on R2. The following statements
are equivalent:

• Fψ(x, y) = ψ(F (x, y)) is a distribution function,

• ψ ◦ PF is a probability measure,

• ψ ∈ I (C).

Thus, investigations about distorted copulas can be as well applied to
the cases of distortions of probabilities and distribution functions.

Finally, notice that, under suitable assumptions, the distortions Fψ ob-
tained from any ψ ∈ I (C) have a quite distinguished property: they de-
scribe all the bivariate distribution functions having the same level sets as F
(see, for example, Durante and Spizzichino (2009); Nappo and Spizzichino
(2009)). Interesting statistical motivations for defining distribution func-
tions by means of level sets have been examined by Arnold et al. (2008).
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