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Abstract

Optimization of simulated systems is tackled by many methods, but most methods

assume known environments. This article, however, develops a ‘robust’ methodology

for uncertain environments. This methodology uses Taguchi’s view of the uncertain

world, but replaces his statistical techniques by Response Surface Methodology

(RSM). George Box originated RSM, and Douglas Montgomery recently extended

RSM to robust optimization of real (non-simulated) systems. We combine Taguchi’s

view with RSM for simulated systems. We illustrate the resulting methodology

through classic Economic Order Quantity (EOQ) inventory models, which demon-

strate that robust optimization may require order quantities that differ from the

classic EOQ.
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1 Introduction

The major purpose of this article is to present a methodology for robust

simulation-optimization. Simulation is much applied in production economics.

The goal of these simulations is often the optimization of the real production

system being simulated. The resulting problem domain is called simulation

optimization; this domain includes a variety of methodologies (see Fu , 2007).

Unfortunately, these methodologies ignore the fact that, in practice, some in-

puts of the given simulation model are uncertain so the optimum solution that

is derived—ignoring these uncertainties—may be completely wrong. There-

fore we derive our methodology, which combines (i) Taguchi’s view of the

world, and (ii) RSM. The Taguchian worldview has been very successful in

production engineering (see the references below). Nevertheless, statisticians

have criticized Taguchi’s statistical techniques; see Nair (1992). (Our exam-

ple shows that the classic EOQ and our robust EOQ differ nearly 25% if the

managers are risk-averse.) Therefore Myers and Montgomery (1995) combine

the Taguchian worldview with RSM; RSM has already built a track record

in the ‘classic’ (non-robust) optimization of real-life (non-simulated) system.

We adapt Myers and Montgomery’s robust RSM to account for the particu-

larities of simulation-optimization; i.e., whereas in real-life experiments it is

hard to vary a factor over many values, this restriction does not apply in sim-

ulation experiments (we use Latin Hypercube Sampling (LHS), which has as

many values per factor as it has combinations; see Section 4.2). So a change

of mindset of the simulation experimenter is necessary; also see Kleijnen et

al. (2005). Moreover, we further adapt Myers-Montgomery’s RSM; e.g., we

add bootstrapping (a statistical technique), Mathematical Programming, and

Pareto frontiers.

More precisely, RSM uses low-order polynomial regression metamodels (meta-

models are also called response surfaces, surrogates, emulators, auxiliary mod-
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els, repromodels, etc.). These metamodels run much faster than the—possibly

computationally expensive—simulation models. RSM was introduced by Box

and Wilson (1951) as an iterative heuristic for optimizing real (non-simulated)

systems. RSM was further developed for robust optimization of such systems

by Myers and Montgomery (1995). We use a less restrictive assumption; i.e.,

we replace Myers and Montgomery (1995, p. 493)’s assumption for the envi-

ronmental variables e (namely E(e) = 0 and cov(e) = σ2
eI) by a more general

and realistic assumption (namely, E(e) = µe and cov(e) = Ωe). When the

noise factors do not have constant variances (so cov(e) 6= σ2
eI ), then Myers

and Montgomery (1995, p. 504) point out that confidence intervals for the

robust optimum become complicated; to solve this problem, we use paramet-

ric bootstrapping. To find a ‘robust’ solution, Myers and Montgomery (1995,

p. 504) superimpose contour plots for the mean and variance of the output,

whereas we use more general and flexible Mathematical Programming, to min-

imize the mean output such that the output variance remains below a given

threshold. Our Mathematical Programming approach, however, requires spec-

ification of threshold values that managers may find hard to quantify; we

therefore try different values, and estimate the corresponding Pareto frontier

showing a trade-off between the output and its variability. To estimate the vari-

ability of this Pareto frontier, we use bootstrapping. Our methodology has the

following particularities. Simulation experiments (unlike real-life experiments)

enable the exploration of many values per input and many combinations of

these values; whereas Myers and Montgomery (1995, pp. 463–534) use only

two values per environmental factor, we use LHS. Instead of the F lack-of-fit

test used in classic and robust RSM, we use leave-one-out cross-validation.

Notice that we assume that the decision variables are continuous (like Myers

and Montgomery (1995, p. 486) do).

In practical applications, simulation may be computationally expensive; e.g., a

single run took 36 to 160 hours of computer time to simulate a crash model at
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Ford; see Simpson et al. (2004). In such applications, the extra computer time

needed for fitting RSM metamodels, followed by bootstrapping and Mathe-

matical Programming is negligible. We illustrate our methodology through a

simple simulation model, namely the EOQ model. Our choice has several ad-

vantages: it saves much computer time; its results can be verified through the

analytical EOQ solution (in practice, simulation is used because there is no

known analytical solution); yet this EOQ simulation enables us to illustrate

some details of our methodology. (The EOQ model is closely related to the

Economic Production Quantity or EPQ; see Darwish (2008). The EOQ model

is also a building block for realistic supply chain simulations.)

The rest of this article is organized as follows. Section 2 summarizes Taguchi’s

worldview. Section 3 summarizes and extends Myers and Montgomery (1995)’s

approach that uses RSM for robust optimization. Section 4 illustrates our new

methodology through the classic EOQ simulation. Section 5 presents our con-

clusions and possible topics for future research. Our online companion paper,

Dellino et al. (2008), gives more details and additional references enabling

further study of robust simulation-optimization.

2 Taguchi’s worldview

Based on Kleijnen (2008, pp. 130–137), we summarize the extensive literature

on Taguchi ’s view as follows. Taguchi distinguishes between two types of vari-

ables: (i) decision (or control) factors, which we denote by dj (j = 1, . . . , k),

and (ii) environmental (or noise) factors, eg (g = 1, . . . , c). Taguchi assumes a

single output (say) w. He focusses on the mean and the variance of this output.

By definition, the decision factors are under the control of the users; e.g., in

inventory management, the Order Quantity (OQ) is controllable. The environ-

mental factors are not controlled by the users; e.g., in inventory management,

the demand rate may not be controllable.
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In this article, we use Taguchi’s view, but not his statistical methods; in-

stead we use RSM. Our main reason is that simulation experiments enable

the exploration of many more factors, factor levels, and combinations of fac-

tor levels than real-life (physical) experiments do. Moreover, we do not use a

scalar Taguchian loss function such as the signal-to-noise or mean-to-variance

ratio; instead we allow each output to have a statistical distribution, which

we characterize through its mean and standard deviation. We solve the result-

ing problem through the Pareto-optimal efficiency frontier—briefly called the

Pareto frontier. Also see Beyer and Sendhoff (2007), Lee and Nelder (2003),

Myers and Montgomery (1995, p. 491), Park et al. (2006), Wu et al. (2009);

the latter authors focus on the mean-variance trade-off in the newsvendor’s

inventory problem.

3 RSM and robust optimization

In their robust RSM Myers and Montgomery (1995) use a polynomial of a

degree as low as possible. They fit a second-order polynomial for the decision

factors dj, to estimate the optimal combination of these factors. To model

possible effects of the environmental factors eg, they fit a first-order polynomial

for these factors. To estimate interactions between the two types of factors,

they fit ‘control-by-noise’ two-factor interactions. Altogether, they fit:

y = β0 +
k∑
j=1

βjdj +
k∑
j=1

k∑
j′≥j

βj;j′djdj′ +
c∑

g=1

γjej +
k∑
j=1

c∑
g=1

δj;gdjeg + ε

= β0 + β′d + d′Bd + γ ′e + d′∆e + ε ,

(1)

where y denotes the regression predictor of the output w, ε the residual with

E(ε) = 0 if this metamodel has no lack of fit and with constant variance

σ2
ε , β = (β1, . . . , βk)

′, d = (d1, . . . , dk)
′, B denotes the k × k symmetric

matrix with main-diagonal elements βj;j and off-diagonal elements βj;j′/2,
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γ = (γ1, . . . , γc)
′, e = (e1, . . . , ec)

′, and ∆ = (δj;g).

Design Of Experiments (DOE) uses coded—also called standardized or scaled—

factor values (say) xj. So the experiment consists of n factor combinations of

the ‘original’ factors (say) zj, which correspond with dj and eg in (1). Coding

is also discussed in Kleijnen (2008, p. 29).

Myers and Montgomery (1995, p. 493) assume that the environmental vari-

ables satisfy E(e) = 0 and cov(e) = σ2
eI. We, however, use the more general

and realistic assumption E(e) = µe and cov(e) = Ωe. Analogous to Myers

and Montgomery (1995), we then derive that this metamodel (1) implies the

regression predictor for the true mean E(w)

E(y) = β0 + β′d + d′Bd + γ ′µe + d′∆µe (2)

and the regression predictor for the true variance var(w)

var(y) = (γ ′ + d′∆)Ωe(γ + ∆′d) + σ2
ε = l′Ωel + σ2

ε (3)

where in (3) l = (γ + ∆′d) = (∂y/∂e1, . . . , ∂y/∂ec)
′; i.e., l is the gradient

with respect to the environmental factors—which follows directly from (1).

So, the larger the gradient’s elements are, the larger the predicted variance

of the simulation output is—which stands to reason. Furthermore, if ∆ = 0

(no control-by-noise interactions), then var(y) cannot be controlled through

the control variables d. Notice the difference between the predicted variance,

var(y), and the variance of the predictor, var(ŷ) with ŷ = ζ̂
′
x; see (4) and (5)

below.

Equation (3) implies that the predicted output y has heterogeneous variances,

because changing the control factors d changes var(y) (heterogeneous vari-

ances arise even if cov(e) = σ2
eI). If a particular decision factor has no effects

on the mean output but has important interactions with the noise factors, then
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these interactions can be utilized to decrease the output variance. If there are

multiple decision factors (unlike our EOQ example), then we first select the

values of some decision factors such that l = 0, so var(y) in (3) is minimized;

next we select the remaining decision factors such that the predicted mean

output E(y) in (2) gets the desired threshold value. For more details we refer

to Myers and Montgomery (1995, p. 494).

Myers and Montgomery (1995, p. 495) also discuss constrained optimization,

which minimizes (e.g.) the variance in (3) subject to a constraint on the mean

in (2). To select an appropriate compromise or ‘robust’ solution, those authors

often superimpose contour plots for the mean and variance. We, however, shall

use Mathematical Programming, because it is more general and flexible.

To estimate the unknown (regression) parameters in (1) we reformulate (1) as

the following linear regression model :

y = ζ ′x + ε (4)

with ζ = (β0,β,b,γ, δ)′ where b denotes the vector with the k × (k − 1)/2

interactions between the decision factors plus their k purely quadratic effects,

and δ denotes the k×c control-by-noise interactions; x is defined in the obvious

way; e.g., the element corresponding with the interaction effect β1;2 is d1d2.

Note that (4) is linear in the regression parameters ζ , whereas (1) is not linear

in the decision variables d. Then (4) gives the Least Squares (LS) estimator

ζ̂ = (X′X)−1X′w (5)

where X is the n × q matrix of explanatory variables with n denoting the

number of scenarios (combinations of decision and environmental factors) de-

termined by DOE that are actually simulated, and q denotes the number of

parameters collected in ζ; w consists of the n simulation outputs. The covari-
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ance matrix of this estimator is

cov(ζ̂) = (X′X)−1σ2
w . (6)

The RSM metamodel (1) implies that σ2
w equals σ2

ε . This variance is estimated

by the Mean Squared Residuals (MSR)

MSR =
(ŷ −w)′(ŷ −w)

n− q
(7)

where ŷ = ζ̂
′
x; also see Kleijnen (2008, p. 23).

Furthermore, we assume that y is normally distributed; i.e., e and ε in (1) are

normally distributed. We can then test the estimated regression parameters

ζ̂j through the following t statistic with n− q degrees of freedom:

tn−q =
ζ̂j − ζj
s(ζ̂j)

with j = 1, . . . , q (8)

where s(ζ̂j) is the square root of the jth element on the main diagonal of (6)

with σ2
w estimated through (7). Myers and Montgomery (1995, p. 488) keep

only the significant effects in their response model. It is well-known that this

test is not very sensitive to nonnormality. We agree that when estimating

the robust optimum, we should use the reduced metamodel, which eliminates

all non-significant effects in the full model—except for those non-significant

effects that involve factors that have significant higher-order effects; see the

‘strong heredity’ assumption in Wu and Hamada (2000). For example, if the

estimated main effect β̂1 is not significant but the estimated quadratic effect

β̂1;1 is, then β̂1 is not set to zero.

To construct confidence intervals for the robust optimum, Myers and Mont-

gomery (1995, p. 498) assume normality and derive an F statistic. Myers and

Montgomery (1995, p. 504) notice that the analysis becomes complicated
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when the noise factors do not have constant variances. We shall therefore

use parametric bootstrapping in the EOQ examples; by definition, parametric

bootstrapping assumes that the distribution of the relevant random variable

is known; e.g., in the EOQ examples, the distribution of the unknown demand

rate is modified normal (to avoid negative demand rates). In general, boot-

strapping is a simple numerical method for obtaining the Estimated Density

Function (EDF) of a—possibly complicated—statistic for a—possibly non-

Gaussian—parent distribution; e.g., our Mathematical Programming solution

(output) of the EOQ problem is non-normal, and the input distribution is

modified normal. Also see Efron and Tibshirani (1993), and Kleijnen (2008,

p. 86).

Like Myers and Montgomery (1995, p. 495) we simply plug in the LS estima-

tors (5) for β0, β, B, γ, and ∆ in the right-hand side of (2); the factors d and

µe are known. To estimate (3), we again plug in the estimators for γ, ∆, and

σ2
ε ; Ωe is known. However, we point out that (3) has products of unknown

parameters, so it implies a nonlinear estimator σ̂2
y . Plugged-in estimators cer-

tainly create bias; this bias we ignore when estimating the Pareto frontier that

balances ŷ and σ̂y. To study the variability of this estimated Pareto frontier

caused by estimating the regression parameters, we use bootstrapping.

Analogous to Myers and Montgomery (1995, pp. 41–54) we wonder whether

the RSM model (1) adequately approximates the true Input/Output (I/O)

function implicitly defined by the underlying simulation model. There are sev-

eral methods for answering this question; see Kleijnen (2008, p. 54). Following

Kleijnen (2008, p. 57), we use leave-one-out cross-validation:

Step 1: Delete I/O combination i from the complete set of n combinations, to

obtain (X−i,w−i). Assume that X−i is not collinear; a necessary condition

is n > q.
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Step 2: Recompute the LS estimator from the I/O data in Step 1:

ζ̂−i = (X′−iX−i)
−1X′−iw−i . (9)

Step 3: Use ζ̂−i from Step 2 to compute ŷ−i, the regression predictor of the sim-

ulation output generated by xi which is the simulation input of the com-

bination deleted in Step 1:

ŷ−i = x′iζ̂−i . (10)

Step 4: Repeat the preceding three steps, until all n combinations have been

processed. This gives ŷ−i (i = 1, . . . , n).

Step 5: To judge whether the metamodel is adequate, use a scatterplot with the

n pairs (wi, ŷ−i).

Step 6: Because the scaling of this scatterplot may give the wrong impression,

also evaluate the relative prediction errors ŷ(−i)/wi.

Step 7: Examine the recomputed effects ζ̂−i (i = 0, 1, . . . , n) where ζ̂−0 denotes

the estimator when zero combinations are deleted (so ζ̂−0 = ζ̂); these

effects should not change much if the regression model is adequate.

The final goal of our robust optimization is to minimize the estimated mean

ŷ while keeping the estimated standard deviation σ̂y below a given Threshold

(say) T . We solve this constrained minimization problem through a Mathemat-

ical Programming solver. We decide to use Matlab’s fmincon, but a different

solver may be used; Gill et al. (2000). This gives the values of the ‘estimated

robust decision variables’ (say) d̂+ and the corresponding estimated mean ŷ

and standard deviation σ̂y. Next, we vary the threshold value T (say) 100

times. These changes may give different solutions d̂+ with their corresponding

ŷ and σ̂y. These pairs (ŷ, σ̂y) enable us to estimate the Pareto frontier. We es-

timate the variability of this frontier through bootstrapping of the estimated

regression estimates that gave ŷ and σ̂y. This methodology is illustrated in the
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next section.

4 EOQ inventory simulation

The EOQ inventory model is often used in practical supply chain manage-

ment. First, we define this model, including symbols and assumptions; also

see Pentico, Drake, and Toews (2009) and Teng (2008). We use the following

assumptions, following Zipkin (2000, pp. 30-39): (i) The demand is a constant

a units per time unit. (ii) The order quantity is Q units. (iii) No shortages are

allowed. (iv) Delivery lead time is zero. (v) Review is continuous. (vi) Total

costs consist of setup cost per order, K; cost per unit purchased or produced,

c; holding cost per inventory unit per time unit, h. The goal is to minimize

the costs per time unit (say) C, over an infinite time horizon. It is easy to

derive that this problem has the following true I/O function, which we shall

use to check our simulation results:

C =
aK

Q
+ ac+

hQ

2
. (11)

Differentiation of (11) shows that the true EOQ is

Qo =

√
2aK

h
, (12)

and the corresponding cost is

Co = C(Qo) =
√

2aKh+ ac . (13)

In our illustration we use the parameter values in a famous textbook; namely,

Hillier and Lieberman (2001, pp. 936–937, 942–943): a = 8000, K = 12000,

c = 10, and h = 0.3; such a high cost K argues for buying products in large

batches, leading to orders approximately placed once every three periods (for
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further comments see Hillier and Lieberman , 2001). So (12) gives Qo = 25298

and (13) gives Co = 87589. (We also run another numerical example with

a smaller ratio between the ordering cost coefficient K and the unit holding

cost coefficient h; namely, an example from Chase et al. (2006) with a =

1040, K = 10, c = 15, h = 2.50. For this example the benefits of the robust

optimal solution are even more evident; e.g., if the manager is risk averse,

then the robust optimum differs approximately 25% from the estimated classic

optimum, and the corresponding mean cost differs approximately 57% from

the estimated classic cost.)

4.1 Classic simulation optimization of the EOQ model

We start the simulation run with an inventory of Q units. Our simulation

experiment consists of the following four steps.

Step 1 (design): To select the experimental area, we start with the interval

[0.5Qo, 1.5Qo]. This selection, however, would imply that the midpoint

coincides with the true optimum input Qo = 25298. We therefore shift

the interval a little bit (namely, by less than 5000 units) to the right

so that it is centered at Q = 30000. Furthermore, we pick five equally

spaced points, including the extreme points; namely, the lowest point

0.5×30000 = 15000 and the highest point 1.5×30000 = 45000; see row 1

of Table 1. The input parameters are fixed to their base (nominal) values

(a = 8000, etc.). Note that a Central Composite Design (CCD), which is

popular in RSM, would also have five points—albeit not equally spaced;

see Dellino et al. (2008) and Myers and Montgomery (1995, p. 55).

Step 2 (simulation model): Simulation gives C(Qi) = Ci, the cost corresponding

with input value i (i = 1, . . . , 5) selected in Step 1; see the I/O combina-

tions (Qi, Ci) displayed in Table 1.

Step 3 (RSM metamodel): Based on the I/O data resulting from Steps 1 and
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Table 1
I/O data of EOQ simulation

Q 15000 22500 30000 37500 45000

C 88650 87641.66 87700 88185 88883.34

Table 2
Cross-validation of EOQ regression metamodel

i β̂0(−i) β̂1(−i) β̂1;1(−i) ŷ(−i) ŷ(−i)/Ci

0 87663.4257 202.004 1097.15

1 87731.998 522.008 640 87849.94 0.991

2 87769.82 139.94 1008.49 87952.11 1.004

3 87628.88 202.004 1137.79 87628.92 0.999

4 87583.63 155.46 1163.64 87951.95 0.997

5 87603.997 479.34 1493.34 89576.98 1.008

2, we estimate a second-order polynomial. We focus on the effects of the

coded decision variable, because the resulting effects (say) β̂ = (β̂0, β̂1, β̂1;1)
′

show the relative importance of the intercept, the main effect, and the

quadratic effect; moreover, their numerical accuracy is better. This β̂ is

displayed in the row with i = 0 in Table 2.

Step 4 (cross-validation): The remaining rows of Table 2 display the re-estimated

regression parameters following from (9), and the re-estimated regression

prediction following from (10). This table also presents the relative pre-

diction errors ŷ(−i)/Ci, which supplement the scatterplot in Figure 1. The

first four columns of Table 2 show that the estimated regression coeffi-

cients remain more or less the same.

Fig. 1. Scatterplot for regression metamodel of EOQ simulation model

When we apply the t statistic defined in (8), we see that the estimated main

effect is not significantly different from zero; the estimated quadratic effect

β̂1;1 is. Because of the ‘strong heredity’ assumption discussed below (8), we

do not replace the estimated main effect by zero. Notice that the estimated

effects are not independent, because (X′X)−1 in (6) is not diagonal.
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The estimated optimum (say) Q̂o follows from the first-order optimality condi-

tion ∂Ĉ/∂Q = β̂1 + 2β̂1;1x1 = 0, where x1 is the coded variable corresponding

with Q. This condition gives Q̂o = 28636. This Q̂o gives the estimated min-

imal cost Ĉo = 87654. In this simple example, we can verify the estimated

optimum: Q̂o/Qo = 28636/25298 = 1.13 and Ĉo/Co = 87654/87589 = 1.001

so the cost virtually equals the true minimum, even though the input is 13%

off. This illustrates the well-known insensitivity property of the classic EOQ

formula.

We also experiment with a smaller experimental area; i.e., a smaller Q range.

The Taylor series suggests that this smaller area gives a better approximation.

The smaller Q range indeed gives a more accurate metamodel; the resulting

estimated optimum is only 1% below the true EOQ and the corresponding

cost virtually equals the true cost; see Dellino et al. (2008).

4.2 Robust optimization of the EOQ model

In this subsection, we still assume that the demand per time unit is a constant

a but this constant is unknown. Uncertainty in parameters of inventory man-

agement is addressed in Borgonovo and Peccati (2007) and Yu (1997). We

assume—without loss of generality—that a has a Normal (Gaussian) distri-

bution with mean µa and standard deviation σa: a ∼ N(µa, σa). Furthermore,

we assume that µa denotes the ‘base’ value used in the classic simulation-

optimization in Section 4.1 (so a = 8000), and σa quantifies the uncertainty

about the true value of this input parameter. We experiment with a ‘low’ and

‘high’ uncertainty: σa = 0.10µa and σa = 0.50µa. Because these standard de-

viations can give a negative value for a, we resample until we get non-negative

values only; i.e., we adjust the normal distribution slightly. This adjustment,

however, is ignored in our further analysis.

13



Table 3
I/O simulation data for EOQ model with uncertain demand rate

Q \ a 4530,34 5478,85 7687,37 9329,26 11559,02

15000 51177,72 61421,54 85273,65 103006 127087,4

22500 51094,63 61085,52 84348,68 101643,2 125130

30000 51615,59 61480 84448,7 101524,3 124713,8

37500 52378,16 62166,7 84958,71 101902,9 124914,1

45000 53261,54 62999,49 85673,71 102530,4 125422,6

In their robust RSM, Myers and Montgomery (1995, pp. 463–534) use only

two values per environmental factor; this suffices to estimate its main effect

and its interactions with the decision factors. We, however, use LHS to select

(say) ne = 5 values for the environmental factor because LHS is popular in

risk and uncertainty analysis (see Kleijnen (2008)). In our EOQ example,

we split the range of possible a values (0 < a < ∞) into five equally likely

subranges. We use lhsnorm from the Matlab Statistics Toolbox to select these

five values from N(µa, σa); see The Mathworks Inc. (2005) and the first row

in Table 3, which uses the relatively high uncertainty σa = 0.50µa. Results for

the smaller uncertainty σa = 0.10µa are presented in Dellino et al. (2008).

For the decision variable Q we select the five values that we also used in Table

1; see the first column in Table 3. We cross the two designs for a and Q

respectively, as is usual in a Taguchian approach. (Nevertheless, we could also

have used LHS to get a combined design for a and Q. Dellino et al. (2008)

use a CCD instead of LHS to get a combined design. Myers and Montgomery

(1995, p. 487) also discuss designs that are more efficient than crossed designs.)

We run the EOQ simulation model for all 5 × 5 combinations of the inputs

(decision and environmental inputs), which gives the other entries of Table 3.

To analyze the I/O data of Table 3, we might compute the estimated condi-

tional variance ̂var(C|Qi) from the row with Qi (i = 1, . . . , 5); also see Lee

and Nelder (2003). Instead we follow Myers and Montgomery (1995) and
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estimate the variance from all the elements in this table, using (3). The lat-

ter approach gives a better estimator, provided the RSM metamodel (1) is

correct.

To compute the LS estimates in the RSM model, we must re-arrange the 5×5

elements of Table 3 into the n×q X-matrix of (5) with n = 25 and q = 5; w is

the vector with the 25 simulation outputs C. This gives the estimated intercept

β̂0 = 88150.40, the estimated first-order effect β̂1 = 190.56 and the second-

order effect β̂1;1 = 1058.33 of Q, the estimated first-order effect γ̂1 = 36774.03

of a, and the interaction δ̂1;1 = −899.67. Dellino et al. (2008) also display the

cross-validation results (analogous to Table 2) and the scatterplot (analogous

to Figure 1). Their results suggest that this metamodel is adequate for robust

optimization through RSM. To verify the negative sign of δ̂1;1 (this estimate is

−899.67), we use the analytical solution (11) to derive ∂2C/∂Q∂a = −K/Q2,

which is indeed negative.

Using a similar RSM metamodel for their example, Myers and Montgomery

(1995, p. 501) derive contour plots for the mean and variance. Because our

EOQ example has a single decision variable, we do not superimpose contour

plots but present Figures 2 and 3. Figure 2 shows the (Q, Ĉ) plot; see (2)

Fig. 2. Estimated (dashed) curve and true (solid) curve for mean cost versus order
quantity

Fig. 3. Estimated (dashed) curve and true (solid) curve for standard deviation of
cost versus order quantity

with the regression parameters replaced by their estimates. Figure 3 shows the

(Q, σ̂C) plot. We prefer to use the standard deviation instead of the variance,

because the former uses the same scale as the simulated cost C and its regres-

sion estimate Ĉ. We use (3) with γ, ∆, and σ2
ε replaced by their estimates,

including (7). This figure shows a second-order polynomial that resembles a
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linearly decreasing function in the relatively small domain of Q. For this sim-

ple example we know the true I/O function of the simulation model—namely

(11)—so we derive the true standard error of the cost C:

σC = σ

(
aK

Q
+ ac+

hQ

2

)
= σ

(
hQ

2
+ [

K

Q
+ c]a

)
=

(
K

Q
+ c

)
σa = cσa+

Kσa
Q

.

(14)

We also plot this σC against Q in Figure 3. Comparing the two curves in this

figure, we conclude that the estimated curve is an adequate approximation.

From Figures 2 and 3 we derive the ‘estimated robust optimal’ order quantity

(say) Q̂+, which we define as the quantity that minimizes the estimated mean

Ĉ while keeping the estimated standard deviation σ̂C below a given threshold

T . We solve this constrained minimization problem through Matlab’s fmincon.

For example, if T = 42500, then Figure 3 implies Q̂+ = 28568. However, when

T becomes smaller (e.g., T = 41500) then Figure 3 implies Q̂+ = 35222; see

Figure 4, in which the curve becomes a horizontal line with ‘height’ Q̂+ if the

threshold is high enough.

Fig. 4. Estimated robust optimal value for EOQ against threshold for standard
deviation of cost

Section 4.1 gave the classic estimated EOQ—namely Q̂o = 28636—assuming

that the demand rate equals the nominal value. Now we assume different

demand rates. The corresponding model gives an estimated optimal order

quantity Q̂+ that differs from Q̂o. This difference is nearly 25% if the managers

are risk-averse (low threshold T ).

We assume that management cannot give a single, fixed value for the threshold.

Therefore we vary the threshold over the interval [41067, 43200]. This interval

gives the estimated Pareto frontier in Figure 5. This figure demonstrates that

if management prefers low costs variability, then they must pay a price; i.e.,

the expected cost increases.
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Fig. 5. Estimated Pareto frontier for EOQ simulation with threshold for standard
deviation of cost

We repeat the experiment with a smaller σa, which implies a less volatile

environment. Some reflection shows that we cannot keep the threshold values

T the same in environments with different magnitudes of volatility. The new

threshold values give a new estimated Pareto frontier. Dellino et al. (2008)

report that a less volatile world gives lower mean cost. Their result quantifies

the benefits of obtaining more information on the uncertain demand rate; e.g.,

such information may be provided by a marketing survey that decreases σa.

The estimated Pareto frontier is built on estimates only; namely ζ̂ using (5).

We therefore analyze this frontier further. Whereas Myers and Montgomery

(1995, pp. 496-503) use rather complicated confidence intervals, we use para-

metric bootstrapping. So we sample (say) B times from the q-variate normal

distribution with mean vector and covariance matrix given by (5) and (6),

where we use the superscript ∗ for bootstrapped values:

ζ̂
∗ ∼ Nq(ζ̂, (X

′X)−1σ̂2
w) . (15)

This sampling gives ζ̂
∗
b with b = 1, . . . , B. This ζ̂

∗
b gives Ĉ∗b ; see (2) with the re-

gression parameters replaced by their bootstrapped estimates computed from

the bootstrapped Ĉ∗b . It also gives σ̂C∗
b
; see (3) where σ2

ε is replaced by the es-

timate computed from the bootstrapped parameters. These two bootstrapped

variables Ĉ∗b and σ̂C∗
b

give the bootstrapped optimal decision variable Q̂+∗
b ,

computed through Matlab’s fmincon. This bootstrap sample gives the B esti-

mated Pareto frontiers of Figure 6, with B = 50 and the true Pareto frontier

derived from the analytical costs (11) and its standard deviation (14), and the

original estimated frontier of Figure 5. Figure 6 demonstrates that bootstrap-

ping gives a good idea of the variability of the estimated Pareto frontier; the

bundle of bootstrapped curves ‘envelop’ the original estimated curve and the
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true curve. The bundle of bootstrapped estimated costs does not completely

envelop the true curve; neither does the bundle for the bootstrapped standard

deviations; see Figures 7 and 8.

Fig. 6. Bootstrapped Pareto frontiers, original estimated frontier (dashed curve),
and true frontier (heavy curve)

Fig. 7. Bootstrapped estimated costs, and true cost (heavy curve)

Fig. 8. Bootstrapped standard deviations of the cost, and true standard deviation
of the cost (heavy curve)

Besides the crossed design for Q and a Dellino et al. (2008) also use a CCD.

They report that the CCD with its n = 9 combinations gives a better estimate

of the true frontier than the 5 × 5 crossed-design does. We conjecture that

the bigger (crossed) design gives a more accurate estimator ζ̂ of the wrong

(misspecified) metamodel (namely, a second-order polynomial) for the true

I/O function implied by the EOQ simulation model; see (11).

5 Conclusions and future research

This article leads to the following conclusions. Robust optimization of simu-

lated systems may use Taguchi ’s worldview, which distinguishes between deci-

sion variables to be optimized and environmental variables that remain uncer-

tain but do affect the optimum. However, Taguchi’s statistical techniques may

be replaced by RSM. Myers and Montgomery (1995)’s RSM for Taguchian

optimization may be further adapted through bootstrapping, which better

enable management to make the final compromise decision. Application of

this new methodology to the classic EOQ model shows that—for a known
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environment—the methodology gives a good estimate of the true EOQ, and—

for an environment with a demand rate that has a known distribution—the

classic EOQ and the robust EOQ differ.

Future research may address the following issues. We conjectured that the

bigger crossed design gave a more accurate LS estimator ζ̂ of a misspecified

metamodel. This is a good reason for using a different type of metamodel,

namely Kriging models (Generalized Linear Models or GLMs are proposed by

Lee and Nelder (2003)) as alternatives for RSM models. In a next article we

shall present Kriging for robust optimization. Furthermore, we shall adjust our

methodology for discrete-event simulation models that have so-called aleatory

uncertainty; we focus on (s, S) models, with either explicit out-of-stock costs

resulting in scalar output or a service constraint resulting in vector output (the

difference S − s is often based on the EOQ model)); this adjustment includes

a switch from parametric bootstrapping to nonparametric (distribution-free)

bootstrapping. Finally, we hope to apply our methodology to complex supply

chain models (also see Hassini (2008)).
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