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Introduction

Simulation-optimization aims to identify the setting of the input parameters of a sim-
ulated system leading to optimal system performances. In practice, however, some of
these parameters cannot be perfectly controlled — due to measurement errors or other
implementation issues, and because of the inherent uncertainty caused by fluctuations
in the environment (e.g. temperature or pressure in physical and chemical processes
or demand in inventory problems). Consequently, the classic optimal solution — de-
rived ignoring these sources of uncertainty — may turn out to be sub-optimal or even
infeasible. Robust optimization (RO) offers a way to tackle this class of problems,
with the purpose of deriving solutions that are relatively insensitive to perturbations
caused by the so-called noise factors.

According to the 2006 report of the National Science Foundation, “the develop-
ment of reliable methodologies – algorithms, data acquisition and management pro-
cedures, software, and theory – for quantifying uncertainty in computer predictions
stands as one of the most important and daunting challenges in advancing simulation-
based engineering science” (Oden, 2006). In practical engineering and management
applications, there exist two different types of uncertainties: aleatory and epistemic
uncertainties (see Swiler and Giunta, 2007). Aleatory uncertainty — also referred to
as variability, stochastic uncertainty, irreducible uncertainty, or Type A uncertainty
— is caused by the inherent randomness in the behaviour of the system under study;
it can be caused by incomplete model input information and is irreducible except
through design modifications. Methods to account for aleatory uncertainty into simu-
lations deal with uncertain input variables that can be specified through a probability
distribution. Epistemic uncertainty — also called state of knowledge uncertainty, sub-
jective uncertainty, reducible uncertainty, and Type B uncertainty — characterizes
the lack of knowledge about the appropriate value to use for a quantity that is assumed
to have a fixed value in the context of a specific application; caused by incomplete
model structure information, epistemic uncertainties are reducible through further
research to gain more insight in the model, or through collecting more data or more
relevant data. The epistemic uncertain input variables are often modeled as sets of
intervals, where each variable may be defined by one or more intervals. Notice that
this does not imply that any value within that interval is equally likely — as it would
be the case with a uniform distribution —; rather, the interpretation is that any value
within that interval is a possible realization of that variable. Most frequently, real (or
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iv Introduction

realistic) applications have to deal with both types of uncertainty at the same time.
A common situation is where the form of the probability distribution for an uncertain
variable is supposed to be known (e.g., it is normally or lognormally distributed): if
the parameters governing the distribution are supposed to be known as well, then
we have to deal with aleatory variables according to some methods properly chosen.
On the other hand, if the parameters characterizing the distribution remain unknown,
then two steps have to be performed: first, the epistemic variables are specified, which
means — in our example — that we specify some intervals on parameter values such
as means or standard deviations of uncertain variables. A particular value is selected
within the specified intervals, according to a given distribution, usually called a prior
distribution. Then, this value represents a particular realization of the epistemic vari-
able and allows to completely define the distribution on the corresponding aleatory
variable.

In the literature, several methods have been proposed for achieving robust opti-
mization in simulation; see Beyer and Sendhoff (2007). The thesis proposes a novel
robust optimization methodology that is applicable to both deterministic and stochas-
tic simulation models, and combines the Taguchian view of the uncertain world with
a metamodeling technique, namely Kriging.
Genichi Taguchi is an engineer and a statistician; Taguchi (1987) introduced an in-
novative approach for reducing variations in the product/process design. The author
identifies two different types of factors that can be varied in designing a product or
process: controllable or decision factors and noise or environmental factors; noise
factors cannot be changed or varied while the process operates or the product is used.
His basic idea in dealing with Robust Parameter Design is to involve noise factors in
the experimental design and seek for the most insensitive, or robust, system configu-
ration in the controllable factors w.r.t. the noise factors variation.
Kriging takes the name from a South African mining engineer, Daniel G. Krige, who
developed this method for geostatistical applications (Krige, 1951). Kriging provides
an interpolating approximation model, which can be seen as a combination of a global
model plus a local deviation, usually modelled as y(x) = f(x) + Z(x), where f(x)
is a regression model (whose structure is selected by the user), and Z(x) is a Gaus-
sian random function with zero mean and non-zero variance. The construction of the
Kriging model is based on an estimation of the unknown parameters by maximizing a
likelihood function using numerical optimization techniques to determine the vector
of the correlation parameters used to fit the model. See also Kleijnen (2008).

The method proposed considers at least two metamodels, namely one for the
mean of the main performance function indicator and one for its variance, caused
by the noise factors. During the iterative robust optimization process, the updating
and validation of these metamodels needs to be carefully considered. In the simplest
case, the developed framework solves a constrained stochastic optimization problem,
namely optimizing the expected value of the objective function, such that the variance
does not exceed a user-defined threshold. By moving this threshold within a given
interval, we are able to estimate a set of Pareto optimal robust solutions for the
specified problem. Further analyses based on the bootstrap method are also performed
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to account for the variability of the metamodelling estimations, thus evaluating the
influence this may have on the robust solutions computed.

The resulting methodology has been applied in the context of Supply Chain Man-
agement, starting from some building blocks such as the Economic Order Quantity
(EOQ) and the (s,S) inventory models.

The dissertation consists of two parts, respectively dealing with the proposed
methodology and the computational experiments. Part I first presents a literature
review (Chapter 1) on robust optimization methods, paying more attention to those
techniques that are applicable to simulation-based applications, eventually using sur-
rogate functions to approximate the simulation model, always treated as a black-box.
Then, Chapter 2 introduces two examples from Inventory Management we will refer
to throughout the thesis: the Economic Order Quantity (EOQ) model and the (s, S)
inventory model are described, starting from the classic formulations and then mov-
ing to the robust optimization problems, which will be discussed in details in Part II;
some possible extensions of both the two models are outlined, to be used for further
research and applications. Chapter 3 discusses a robust approach for simulation-
optimization, combining Taguchi’s method and Response Surface Methodology: the
classic method is briefly recalled, then the robust formulation proposed by Myers and
Montgomery (2002) is described; finally a contribution for extending the method is
proposed, through removing some restrictive assumptions, thus resulting in a more
general approach (Dellino et al., 2008a). Chapter 4 proposes a novel methodology
to deal with robust simulation-optimization problems, through integrating Taguchi’s
method with Kriging metamodels (Dellino et al., 2008b), which often allows a more
precise estimation of the system response. Part II extensively discuss the experiments
performed on the EOQ and (s, S) inventory model and the results obtained by ap-
plying the approaches presented in Chapters 3-4. Chapter 7 is devoted to a final
discussion over the methods proposed and the results achieved in the applications
considered, comparing the performances provided by the two adopted metamodelling
techniques — namely, regression and Kriging — and the alternative approaches ex-
amined in previous chapters.
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Methodology
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Chapter 1

Robust Optimization
in Simulation-based
Applications

The simulation-optimization process aims to identify the setting of input parameters
leading to optimal system performance, evaluated through a simulation model of
the system itself. The factors involved in the simulation model are often noisy and
cannot be controlled or varied during the design process, due to measurement errors
or other implementation issues; moreover the inherent uncertainty residing in the
model — mainly caused by fluctuations in the environmental parameters — is in
many cases ignored. Therefore, the presumed optimal solution may turn out to be
sub-optimal or even infeasible. Robust optimization tackles problems affected by
uncertainty, providing solutions that are almost insensitive to perturbations in the
model parameters.

Several alternative methods have been proposed for achieving robustness in simu-
lation-based optimization problems, adopting different experimental designs and/or
metamodeling techniques. The present chapter aims at reviewing the current state
of the art on robust optimization approaches, especially devoted to simulated sys-
tems. The remainder of the chapter is structured as follows: Section 1.1 introduces
the “classical” robust optimization approach, originally proposed by Ben-Tal and Ne-
mirovski in 1997; Section 1.2 discusses an alternative approach to the one proposed
by Ben-Tal and Nemirovski, which was introduced by Taguchi in 1970s. Section 1.3
presents a method to tackle robustness based on Response Surface Methodology, with
some applications to process and design optimization; Section 1.4 discusses robust op-
timization through the use of Kriging metamodels. Finally, Section 1.5 introduces the
robustness issue in the context of Supply Chain Management.

3



4 Chapter 1

1.1 Robust Counterpart formulation through Un-
certainty Sets

The robust optimization methodology developed by Ben-Tal and Nemirovski (2008)
investigates different choices of uncertainty sets to model data uncertainty, in order
to characterize the structure of the resulting robust counterparts. In particular, their
research focuses on robust formulations for Linear Programming (LP), Mixed Integer
Programming (MIP), Second Order Cone Programming (SOCP) and Semidefinite
Programming (SDP) problems. For these family of problems a fundamental issue
is related to the feasibility of the solutions with respect to the classical optima; in
particular, the challange is to guarantee that the constraints will be satisfied for any
possible value of the parameters in a given uncertainty set. The computational com-
plexity of the deterministic problem and its robust counterpart is also investigated,
aiming at insuring that the problem remains tractable.

Although the approach suggested by Ben-Tal has a strong theoretical background,
there are several practical problems to which it cannot be applied, due to many reasons
(see Beyer and Sendhoff, 2007): the main disadvantage is related to the necessity to
model a real-world problem through a linear model with (at most) conic or quadratic
constraints; moreover, in order to satisfy all the assumptions under which the method
is applicable, the approximate model might become very complex and difficult to
manage. Finally, if the objective function is not defined through a mathematical
expression but can only be evaluated through simulations, the methodology presented
cannot be applied.

Zhang (2004) deals with some of the aforementioned cases, proposing a mathe-
matical formulation to extend Ben-Tal’s approach to parameterized nonlinear pro-
gramming, with both equality and inequality constraints; the inequality constraints
are supposed to be strictly satisfiable and are referred to as safety constraints. Zhang
points out that the approach he proposes is especially suitable for applications where
the satisfaction of safety constraints is of crucial importance. However, the formu-
lation of the robust problem assumes that a reasonable estimate for the uncertain
parameters is available and the magnitude of the variations in the uncertain param-
eters is relatively small. He proved that his formulation reduces to the Ben-Tal’s
when the objective function and the inequality constraints are linear and there is no
uncertainty in the equality constraints. Anyway, further research is needed to develop
algorithms able to effectively solve the proposed formulation.

Mainly based on Ben-Tal’s approach, Bertsimas proposes a formulation for stochas-
tic and dynamic optimization problems using uncertainty sets, in contrast to the
stochastic programming approach, which assumes full knowledge of the underlying
probability distributions. Bertsimas and Sim (2004) propose a robust optimization
methodology — based on linear and mixed-integer programming — to find an optimal
supply chain control strategy, assuming stochastic demand. Their approach incorpo-
rates demand randomness in a deterministic manner, without making any specific
assumption on the demand distribution. First, a robust formulation is given for the
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simple uncapacitated single-station case; then, capacity constraints are introduced,
both on the orders and on the inventory level; finally, the network case is considered.
The numerical experiments showed that, if only the mean and the variance of the de-
mand distribution are known, the robust policy often outperforms the nominal policy,
as well as policies computed assuming full but erroneous knowledge of the demand
distribution. The authors also prove that the nominal problem and its robust counter-
part belong to the same complexity class and the robust formulation does not suffer
from the curse of dimensionality. The method can guarantee the robust solution to
be feasible if less than a prespecified number of coefficients change; moreover, if the
coefficient of variation affects a bigger number of factors, they provide a probabilistic
guarantee that the solution will be feasible with high probability. The method has
been applied by Bertsimas and Thiele (2004, 2006).

In a recent paper, Bertsimas et al. (2007) propose an approach to solve Robust
Optimization problems in which the objective function is not explicitly available, being
derived from simulation models. They implement an iterative local search method,
moving along descent directions of the worst-case cost function. The first step of
the proposed algorithm consist of exploring a (properly defined) neighborhood of the
current point; then, a descent direction can be found by solving a Second Order Cone
Programming (SOCP) problem. The robust local search is designed to terminate at
a robust local minimum, i.e. a point where no improving directions are available for
the algorithm.

1.2 Robust Product Optimization: Taguchi’s Ap-
proach

In the 1980s, Genichi Taguchi, a textile engineer, introduced new ideas on quality im-
provement, revealing an innovative parameter design approach for reducing variation
in products and processes (see Taguchi, 1987). His methodology has been successfully
applied in many important industries in America, such as Ford Motor Company and
Xerox.

Taguchi identifies three stages in the design process:

• System Design is a general approach to design a process that includes defining
its objectives and goals.

• Parameter Design involves defining responses of interest and optimizing them
w.r.t. their mean and variation.

• Tolerance Design corresponds to fine-tuning the variables that have been opti-
mized in the previous stage by controlling the factors that affect them.

Notice that the last two stages may appear quite similar to each other and thus it may
be difficult to keep them distinct Beyer and Sendhoff (2007). In fact, from a math-
ematical point of view, parameter and tolerance design differ only in the granularity
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by which design parameters are treated. On the other hand, from a practical point of
view, it is important to distinguish between the two phases, because they can occur
under very different restraints, e.g. design time versus operation time. As Figure 1.1
illustrates, Taguchi — focusing on Parameter Design — distinguishes between two
different types of factors that can be varied in designing a product or process:

• control or decision factors (denoted by dj , j = 1, . . . , nd) are under the control of
the users; e.g., in inventory management, the order quantity may be controllable.

• noise or environmental factors (denoted by ek, k = 1, . . . , ne) cannot be changed
or varied while the process operates or the product is used; e.g. the demand rate
in inventory problems.

Environmental factors

e1 … ene

Simulation model

(black box)
Output w

Decision
factors

d1

.

.

.

dnd

Figure 1.1: Taguchi’s view

Notice that, in practice, the controllability of a factor depends on the specific sit-
uation; e.g., the users may change the demand rate through an advertising campaign.

Other authors distinguish between environmental uncertainty (e.g., demand un-
certainty) and system uncertainty (e.g., yield uncertainty); see Mula et al. (2006) and
also Beyer and Sendhoff (2007). Implementation errors may also be a source of uncer-
tainty. These errors occur whenever recommended (optimal) values of control factors
have to be realized in practice; see Stinstra and den Hertog (2008). Continuous values
are hard to realize in practice, because only limited accuracy is then possible; e.g., the
optimal solution in the Economic Order Quantity model (EOQ) turns out to be the
square root of some expression, but in practice only a discrete number of units can be
ordered. Besides implementation errors, there are validation errors of the simulation
model — compared with the real system — and the metamodel — compared with
the simulation model —; see Kleijnen and Sargent (2000).

Taguchi’s basic idea in dealing with Robust Parameter Design is to take account
of the noise factors in the experimental design and seek for the most insensitive,
or robust, system configuration in the controllable factors w.r.t. the noise factors
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variation.
As far as the experimental strategy is concerned, Taguchi adopted crossed arrays,
resulting from the product of two Design of Experiments, one in which control factors
d are varied (obtaining the “inner array”, as Taguchi calls it) and one in which noise
factors e are varied (thus obtaining the “outer array”): combining them together is
equivalent to consider variations in the uncontrollable factors at different locations in
the space of the controllable factors.

Taguchi further distinguishes between factors that have a location effect, changing
the mean of the response or objective function, and factors that have a dispersion
effect, since they affect the variance of the process. Therefore, in the optimization
process, Taguchi takes into account the first two moments of the distribution of the
objective function, and combines them using the signal-to-noise ratio (SNR). Taguchi
suggests to consider three types of problems, which correspond to minimization, max-
imization, and the case the response has a target value:

1. “Smaller the better”. Here it is suggested to select the solution as the factor
combination in the inner array that maximizes

SNRS = −10 log
n0∑
i=1

w2
i

n0
(1.2.1)

where wi = w(d, ei) and n0 is the number of runs in the outer array.

2. “Larger the better”. Here the solution is given by the inner array point maxi-
mizing

SNRL = −10 log
1
n0

n0∑
i=1

1
w2
i

(1.2.2)

3. “Target is best”. Here Taguchi proposes a two-step approach, suggesting two
cases:

(a) µw (mean of w) is not related to σw (standard deviation of w). In this case
the steps are the following:

i - Select some control factors that maximize

SNRT1 = −10 log s2 (1.2.3)

where s2 is the sample variance of the outer array observations.
ii - Select some other inner array factor (not varied before) to make

w ≈ T (1.2.4)

where w is the average of the outer array observations and T is the
target of the quality characteristic.

(b) If σw is proportional to µw, a case likely to occur in practice, then
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i - Select some control factors to maximize

SNRT2 = −10 log
w2

s2
(1.2.5)

ii - Select some other control factor, not varied before, to make

w ≈ T.

Since the standard deviation is proportional to the mean, the idea is
that the controllable factors will change the mean but will not change
the ratio w2/s2 much.

Some aspect of the Taguchian approach have been strongly criticized; see, among
others, Myers et al. (1992), Myers and Montgomery (2002) and del Castillo (2007).
The mostly debated issues were the following:

• A data set with no outer array variability and one with considerable outer array
variability may result in the same SNR; therefore, SNR would result inefficient
for Robust Parameter Design.

• No attention is paid to the computational costs required by the experimental
design: in fact, using a crossed array design often requires a large number of
runs, which can be prohibitive in some industrial processes.

• The method lacks of flexibility in modeling the design variables, not taking into
account the interactions either among control factors or between control and
noise factors. Standard ANOVA techniques can be used to identify the control
factors that impact SNR (see Myers and Montgomery, 2002; Robinson et al.,
2004).

• Factors may have both location and dispersion effects, so the proposed two-step
approach may be infeasible to do in practice. Moreover, the adoption of the
SNR as performance characteristic appears to be too restrictive (Park et al.,
2006) and risks to confound the mean and variance contributions; keeping them
separately, instead, can provide further insight into the process behaviour.

1.2.1 Definition of a Loss Function

Although based on Taguchi’s view of modeling uncertainty in a design process, some
authors (Trosset, 1997) have suggested to directly model the response as a func-
tion of both control and noise factors, instead of using SNRs. Suppose to mea-
sure q performance indicators, w1, . . . , wq; let wi(d, e) denote the value of the i-th
performance indicator when control and noise factors assume values (d, e) and let
l[w1(d, e), . . . , wq(d, e)] denote the corresponding loss. A robust design approach will
seek a combination of control factors that minimizes the expected loss, computed
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w.r.t. the random vector e. If the distribution of e does not depend on d, then the
objective function

L(d) =
∫
l[w1(d, e), . . . , wq(d, e)] p(e) de, (1.2.6)

is obtained, where p(e) denotes the probability density function of e.
Then a question arises: how have statisticians sought to minimize Eq. 1.2.6? A
numerical optimizer would answer to this question in the following manner:

1. A design is chosen, that specifies the (dj , ej) at which the yi have to be evaluated;
this approach results in a single “combined” array, instead of using inner and
outer arrays — as Taguchi suggested to do.

2. The wi(dj , ej) are used to construct cheap-to-compute surrogate models ŷi.

3. Optimization is carried out using the surrogate objective function

L̂(d) =
∫
l[ŷ1(d, e), . . . , ŷq(d, e)]w(e) de. (1.2.7)

A similar approach is suggested by Sanchez (2000), who proposes a robust method-
ology, starting from Taguchi’s approach and combining it with metamodeling tech-
niques. Focusing on discrete-event simulation models, she identifies some performance
characteristic, denoted by w(d), d being the vector of decision factors, and an asso-
ciated target value T . The goal would be to select the control factors to keep the
objective function on target, with zero variance. However, this would be an ideal sit-
uation — hard to realize in practice. Therefore, aiming at finding a trade-off between
performance mean and variability, Sanchez proposes to use a quadratic loss function,
defined as follows: assuming that no loss occurs when w(d) achieves the target T , the
quadratic loss function can be written as

l(w(d)) = c[w(d)− T ]2, (1.2.8)

where c is a scaling factor, introduced to take account of possible units conversions.
It follows from Eq. 1.2.8 that the expected loss associated with configuration d is

E[l(w(d))] = c[σ2 + (µ− T )2] , (1.2.9)

where µ and σ2 denote the true mean and variance of the output function y, respec-
tively.
As far as the robust design is concerned, Sanchez tries to characterize the system be-
haviour as a function of the control factors only. First, an appropriate experimental
design is planned, for both control and noise factors. Then, for every combination of
control factor configuration i and noise factor configuration j, the sample average wij
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and sample variance s2ij are computed — after suitable truncation to remove initial-
ization bias. Finally, summary measures across the noise space for each control factor
configuration i are computed:

wi· =
1
ne

ne∑
j=1

wij (1.2.10)

V i· =
1

ne − 1

ne∑
j=1

(wij − wi·)2 +
1
ne

ne∑
j=1

s2ij (1.2.11)

where ne is the number of points in the noise factor plan.
Two initial metamodels are then built, using regression polynomials: one for the
performance mean, and one for the performance variability; for discrete-event sim-
ulation experiments, Sanchez recommends a design which allows for fitting at least
a quadratic effect. Robust configurations are identified by combining information
resulting from the mean and variance metamodels, using Eq. 1.2.9, where the true
mean and variance are replaced by the estimate given in Eqs. 1.2.10-3.2.24. If the
configurations suggested by the robust design were not among those initially tested,
further experimentation could be needed: in this case, however, computational time
could be saved, by screening among the decision factors involved in the experiment.

Al-Aomar (2002) presents an iterative scheme to solve simulation-based optimiza-
tion problems. His work considers a discrete-event simulation model; the (control-
lable) design parameters characterizing the system are d1, . . . , dn, and its perfor-
mances are evaluated through some metrics w1, . . . , wq. Then, an overall utility func-
tion U is defined combining multiple performance measures at each point into a single
function. The general formulation of the system design problem can be defined as
follows:

max U(w1, . . . , wq)
s.t. wi = fi(d1, . . . , dn), 1 ≤ i ≤ q (1.2.12)
dj ∈ S, 1 ≤ j ≤ n

S being the feasible space for the control variable d. The methodology proposed by
Al-Aomar consists of four modules: i) in the Simulation Modelling (SM) module, a
discrete-event simulation model is utilized to evaluate the set of performance metrics
wi associated with each solution alternative d, in terms of means and variances; ii)
the Robustness Module (RM) transforms the mean and variance of each performance
measure into a Signal-to-Noise Ratio — thus adopting a Taguchian approach; iii) the
Entropy Method (EM) module is used to build the utility function U by linearly com-
bining the performance criteria, through a proper choice of the weights, dynamically
updated at each iteration; iv) the Genetic Algorithm (GA) module is utilized as a
global optimizer, working on a set of possible solutions that are selected basing on the
overall utility function value at each point. A convergence test is conducted at the
end of each step to control whether any stopping criterion is met (maximum number
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of generations reached or convergence rate achieved). For a detailed discussion, see
also El-Haik and Al-Aomar (2006).

1.3 Dual Response Surface Approach

Moving from Taguchi’s approach to Robust Optimization and on the basis of the criti-
cism on using SNRs, some authors like Myers and Montgomery (2002) suggest to build
separate models for the mean and variance of the system performance, adopting the
so-called Dual Response Surface approach. This methodology has some advantages:

• It provides an estimate of mean and standard deviation at any location of in-
terest in the control design variables.

• Some insight can be gained regarding the roles of these variables in controlling
process mean and variance.

• It could be easily integrated into process optimization based on a squared error
loss criterion, Êe(w − T )2 = [Êe(w)− T ]2 + σ̂2

e(w)w or the maximization of an
estimated quantile Êe(w) − 2σ̂e(w) in the Taguchian “larger the better” case,
or the minimization of Êe(w) + 2σ̂e(w) in the Taguchian “smaller the better”
case.

• It allows the use of constrained optimization; that is, choosing a target value
of µ̂e[w(d, e)] or, better to say, a threshold T , below which one cannot accept.
Therefore, the following problem has to be solved:

min
d
σ̂2

e[w(d, e)] s.t. µ̂e[w(d, e)] ≤ T (1.3.1)

The choice of several values of T may be made to provide several alternatives
for the user.

1.3.1 Robust Process Optimization

The dual response surface approach has been successfully applied to robust process
optimization, as discussed in del Castillo (2007). Quite often, in fact, the purpose is
to reach a desired performance for the process that manufactures some products —
e.g. by minimizing the cost of operation in a production process, or the variability
of a quality characteristic, or by maximizing the throughput of the manufacturing
process. Evidently, multiple — and sometimes conflicting — responses are usually
considered in practical problems. However, due to noisy data and/or to uncertainty
affecting some parameters of the model, achieving robust performances is of interest.

Besides what discussed so far about possible sources of uncertainty, Miró-Quesada
and del Castillo (2004) point out that the classical Dual Response Surface approach
takes into account only the uncertainty due to the noise factors; they identify an ad-
ditional component as due to the uncertainty in the parameter estimates. Therefore,
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they propose an extension of the Dual Response Surface approach, by introducing
the additional variance of the parameters estimates into an objective function that
combines it with the noise factor variance. Optimizing such a function will achieve a
process that is robust with respect to both noise factor variation and to uncertainty
in the parameter estimates.

One such function is the variance of the predicted response, where the variance is
now taken w.r.t. the parameter estimates of the model and w.r.t. the noise factors,
thus resulting in V are,β̂(ŷ(d, e)).

1.3.2 Robust Design Optimization

Robustness is also a central issue in design optimization. Many engineering applica-
tions have to deal with the uncertainty which affects the components of the system
under design; ignoring the source of uncertainty and assuming some parameters to
be exactly known and constant might cause the designed system not to be adequate
whenever the environmental setting changes.

Bates et al. (2006) compare different methods to perform RO, applying them to
solve (robust) design optimization of a piston: the objective is to achieve a given mean
cycle time while minimizing the standard deviation of the response. The authors dis-
cuss the Taguchian approach, based on crossed-array experimental design and max-
imization of the SNR; the Response Model analysis, where the design involves both
decision and environmental factors, taking account not only of main effects but also of
factor interactions, which can influence the variance of the system response; and the
Dual Response Surface approach. The framework proposed, which is called Stochas-
tic Emulator Strategy, consists of the following building blocks: (i) DoE, using an
array that includes both design and noise factors; preferable designs are space-filling
designs (such as LHS) or lattice designs rather than orthogonal arrays or fractional
factorials, to achieve more uniform coverage of the input space. (ii) Metamodel (or
emulator, as they called it) fitting, to represent the relationship between all factors
— disregarding whether they are decision or environmental factors — and the chosen
response. (iii) Metamodel prediction, to estimate the piston cycle time for a given
set of factor values and evaluate the effect of noise on the output by studying how it
behaves when subject to small changes in factor values. (iv) Optimization process,
minimizing the output variance, with a target value for the mean cycle time.

1.4 Robust Optimization using Kriging Metamod-
els

Lee and Park (2006) present a methodology — based on Kriging metamodels — to
tackle robust optimization in (deterministic) simulation-based systems. Simulated
annealing is adopted to solve the optimization problem. The approach is basically
the one proposed by Taguchi, employing mean and variance as statistics to study the
insensitivity of the response to possible variations in the noise factors.
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The use of Kriging as approximation technique is justified by the fact that Kriging
provides reliable approximation models of highly nonlinear functions, and this feature
is even more useful in RO than it is in classical optimization, since in general the non-
linearity of the response variance is higher than that of the function itself. The choice
is also supported by Jin et al. (2003), who compare some metamodelling techniques
and — based on the results of some tests performed on both mathematical functions
and a more complex case study — they conclude that Kriging models provide better
accuracy than the other selected alternatives. However, Allen et al. (2003) notice that
regression modeling should not be quickly discarded for cases in which the number of
runs is comparable to the number of terms in a quadratic polynomial model. Besides
that, Kriging-based approaches offer potentially important accuracy advantages as
the number of runs increases from those minimally needed to estimate a quadratic
polynomial model.

1.4.1 Problem formulation and algorithm description

We denote the response we are interested in by w; it depends on both control factors
(d) and noise factors (e).

The robust optimization problem aims at determining a design point d (we are
not able to control the noise factors e) providing a target response value µw, with the
smallest variation, σ2

w. The corresponding formulation is given by:

min σ2
w (1.4.1)

s.t. µw ≤ µw (1.4.2)

Since the analytical computation of both mean and variance of a given response
w is not always viable, being time expensive or too difficult to be solved, one might
think to approximate the two statistics by means of the first-order Taylor expansion,
which provides the following expressions:

µw ≈ w(d, e)d̄,ē ; (1.4.3)

σw ≈
nd∑
i=1

(
∂w

∂di

)2

d̄

σ2
di

+
ne∑
j=1

(
∂w

∂ej

)2

ē

σ2
ej
, (1.4.4)

where d̄ and ē denote the mean vectors of the control and noise factors, respectively,
and σ2

di
and σ2

ej
represent the variance of the i-th control variable and the j-th noise

variable, respectively.
It should be pointed out, however, that Eqs. 1.4.3-1.4.4 are valid approximations

only for monotonic functions, which is usually a property difficult to determine, when
working with black-box simulation models.

Fig. 1.2 depicts the main steps of the method proposed by Lee and Park (2006).
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Global Robust Optimization (Lee and Park, 2006)

Input: initial design (D1, s1 × (nd + ne) in the control-by-noise space (d, e);
probability distribution of control and noise factors;
design for Monte-Carlo simulations (D2, s2 × (nd + ne)), s2 > s1;

begin
for each design point (dk, ek) in D1, k = 1, . . . , s1

Run the simulation model
Compute wk = w(dk, ek)

Fit a Kriging metamodel of the response, y(d, e)
for each design point in D2

Predict the response using the metamodel, ŷ(d, e)
Compute the sample variance w.r.t. the noise factors e, σ2

ŷ(d)
Solve the optimization problem, according to Eq. 1.4.1,

using the Kriging metamodels for mean and variance
end

Figure 1.2: Lee and Park (2006)’s Global Robust Optimization Scheme

1.4.2 Important issues

Some issues emerge from Lee and Park (2006), which are shortly pointed out in the
following:

• The authors fit one single metamodel over the control-by-noise factors space.
They suggest it to be highly accurate, since it would be used to derive the
approximation model for the variance.

• To derive a model for the mean of the response, they use the approximation
provided by Eq. 1.4.3, applying it to the metamodel computed.

• To derive a model of the variance, they use Monte-Carlo simulations, performed
not on the simulation model but on the (inexpensive) metamodel obtained in
the beginning.

• The authors point out that a post-processing may be necessary, due to the
nonlinearity both of the response and (even more) of its variance, and to ap-
proximation errors coming from fitting the metamodel of the variance based on
the metamodel of the response function. It would aim to further refine the ro-
bust optimum, but experimental results usually show quite small improvements.
The post-processing consists in solving the following optimization problem, re-
stricting the search area to the neighborhood of the optimal solution found so
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far:

min σ̂2
w =

nd∑
i=1

(
∂ŷ

∂di

)2

σ2
di

+
ne∑
j=1

(
∂ŷ

∂ej

)2

σ2
ej
, (1.4.5)

s.t. ŷ(d, e)d̄,ē ≤ µ̄w (1.4.6)

• As a further research topic, the authors suggest to adopt two distinct meta-
models, approximating the true response and the true variance. The authors
suggest to adopt this approach for strongly nonlinear models, especially as far
as the variance model is concerned.

1.5 Optimization under uncertainty in Supply Chain
Management

Supply Chain Management (SCM) is the process of planning, implementing and con-
trolling the operations of a supply chain as efficiently as possible. The importance
of supply chain management is increasing over time, because companies have to face
the necessity to improve customer service, which is not possible by considering just
separate organizations. In fact, a crucial role for improving the performance of the
entire system — which usually has a complex structure — is played by the coor-
dination of interactions among all the entities involved. This need has been driven
by increasing customer expectations, growing global competition, and technological
developments, which have jointly contributed to greater uncertainty and volatility of
the management processes.

In general, supply chains operate in uncertain environments. Therefore, opera-
tions need to be planned and executed to account for risk and uncertainty, that can
be caused by either internal or external factors. One of the primary challenges is
represented by customer demand uncertainty, which shows up in multiple ways, such
as increasing customer expectations for price, quality and delivery performance, de-
mand for customized products, shortened product life cycle, and unstable demand
behavior. These factors are supplemented by the traditional uncertainty concerning
demand volume.

As a result of what discussed so far, robustness turns out to be one of the ma-
jor issues that must be taken into account in SCM. Designing a robust supply chain
would imply deriving values for the factors that managers can control when making a
strategic decision about the supply chain, accounting for the randomness of the envi-
ronmental factors. The supply chain literature distinguishes between robustness and
flexibility. A flexible supply chain can react to a changing environment by adapting
its operations; see Beamon (2000) and Zhang et al. (2003). A robust supply chain
keeps its design fixed, but can still accommodate many changes in its environment.
So the two concepts focus on operational and strategic decisions respectively. Also
see Van Landeghem and Vanmaele (2002).
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Inventory planning plays a crucial role in SCM (see Shapiro, 2007): this asks for
the design of planning systems using inventory models to select reorder points, replen-
ishment quantities, and safety stocks based on demand forecasts. Inventory planning
is strictly related to the decision-making process which affects the whole supply chain;
ignoring other supply chain decisions and costs can have negative consequences on the
efficiency and effectiveness of the inventory management. On the other hand, supply
chain plans ignoring the inventory consequences will also be inefficient and ineffective.

The objective of inventory management has been to keep enough inventory to meet
customer demand, being — at the same time — cost effective. However, inventory
has not always been perceived as an area to control costs. Traditionally, companies
have held “generous” inventory levels to meet long-term customer demand because
there were relatively few competitors and products in a generally sheltered market
environment. In the current global business environment, with many more competi-
tors and highly diverse markets where new products and new product features are
rapidly and continually introduced, the cost of inventory has increased, partially due
to faster product obsolescence. At the same time, companies are continuously seeking
to lower costs so they can provide a better product at a lower price.

Indeed, in this context, inventory is a natural candidate for cost reduction (Rus-
sell and Taylor, 2008). High inventory costs have motivated companies to focus on
both efficient supply chain management and quality management. They believe that
inventory can be significantly reduced by reducing uncertainty at various points along
the supply chain. In many cases, uncertainty is introduced by poor quality on the
company or its suppliers or both. These factors can be expressed through variations
in delivery times, uncertain production schedules caused by late deliveries, poor fore-
casts of customer demand, large fluctuations in customer demand and large numbers
of defective products requiring levels of production or service higher than necessary.

An efficient supply chain management allows products or services to be moved
from one stage of the supply chain to another according to a reliable communication
system between customers and suppliers. Items are replaced as they are diminished
without maintaining larger buffer stocks of inventory at each stage to compensate for
late deliveries, inefficient service, poor quality, or uncertain demand. An efficient and
well coordinated supply chain reduces these sources of uncertainty so that this type
of system will work adequately; see Shapiro (2007) and Russell and Taylor (2008).

Some companies maintain buffer inventories between production stages to offset
irregularities and problems and keep the supply chain flowing smoothly. On the other
hand, quality-oriented companies consider large buffer inventories to be a costly crutch
that hides problems and inefficiency primarily caused by poor quality. Followers
of quality management believe that inventory should be minimized. However, this
may primarily work for a production or manufacturing process. For the retailer
who sells finished goods directly to the customer or the supplier who sells parts or
materials to the manufacturer, inventory still is a necessity. Hence the traditional
inventory decisions of how much to order and when to order continue to be important
in the supply chains. In addition, the traditional approaches — mainly based on
Economic Order Quantity and (s,S) models (see, e.g., Zipkin (2000)) — to inventory
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management are still widely used by most companies (Neale et al., 2004).
It is matter of fact that a company employs an inventory strategy for many reasons

both in final and intermediate stages of its supply chain. Since demand is usually not
known with certainty, it is not possible to produce exactly the amount required. An
additional amount of inventory is kept on hand to meet variations in product demand.
This uncertainty about demand back upstream in the supply chain and causes stages
to increase their level of inventory to compensate. Other stocks of inventory are
devoted to cope with seasonal or cyclical demand maintaining a relatively smooth
production flow during the year.

At the other end of the logistic chain, a company might keep stocks of parts and
raw materials to meet variations in supplier deliveries. Components and materials
are kept on hand so that the production process will not be delayed as a result of
missing or late deliveries or shortages from a supplier. These motivations often induce
companies to use inventories to decouple the production processes of different stages of
the supply chain. Moreover, a company will form stock of inventory to take advantage
of price discounts or future price variations or even to limit the effect of cost ordering.

The ability to effectively meet internal organizational demand or external customer
demand in a timely and efficient manner leads to the concept of level of customer
service. A primary objective of today’s supply chain management is to provide a level
of customer service as high as possible. Customers for finished goods (or internal
customers along the supply chain) usually perceive quality service as availability of
goods when they want them. To provide this level of quality in the customer service,
the tendency is to maintain large stocks of all type of items. However, there is a
cost associated with carrying items to inventory, which creates a tradeoff between the
quality level of customer service and the cost of that service; see Russell and Taylor
(2008).

As the level of inventory increases to provide better customer service, inventory
costs increase. The conventional approach to inventory management is to maintain a
level of stock to solve the compromise between inventory costs and customer service.
The current global view of the production and logistics leads companies to strive to
reduce prices also through reduced inventory costs and calls for more sophisticated
models and methods able to reduce the uncertainties characterizing the supply chain
giving robust inventory solutions; see Shapiro (2007) and Russell and Taylor (2008).
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Chapter 2

Two examples from Inventory
Management

In this chapter we introduce some examples we will use as benchmarks to test our
heuristic method, taken from inventory optimization within the context of Supply
Chain Management. Although we have not described the proposed methodology yet,
this chapter may help in understanding the procedure more easily, having already in
mind the context and some applications.

The chapter is structured as follows: Section 2.1 deals with the Economic Order
Quantity (EOQ) model, Section 2.2 discusses the (s, S) inventory model and Section
2.2.1 extends the previous model, by taking into account possible output constraints
(e.g. on the service level). Each section includes the description of the classic version
of the problem — where no uncertainty is assumed —, then it introduces the robust
formulation, highlighting the motivation behind the study, the variables involved (dis-
tinguishing them between decision and environmental factors) and the objectives we
want to optimize.

2.1 Economic Order Quantity (EOQ) model

2.1.1 Problem description

The well-known Economic Order Quantity (EOQ) model is based on the following
assumptions (see Zipkin, 2000):

i. The demand is known and constant, equal to a items per unit time.

ii. Q items are ordered at a time, to replenish the inventory.

iii. Planned shortages are not allowed.
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iv. The delivery lead time is 0, i.e. goods arrive into inventory as soon as an order
is placed.

v. Continuous review is assumed, i.e. an order is placed as soon as the inventory
level falls down to the prescribed reorder point, which is set to zero, due to
hypotheses (i) and (iv).

vi. Costs include:

• the setup cost for ordering one batch, K;

• the cost for producing/purchasing each item, c;

• the holding cost per item held in inventory per unit time, h.

The goal is to minimize the average costs per unit time, over an infinite time horizon.
Defining a cycle as the period T between two consecutive replenishment of inventory,
the cycle length is given by T = Q/a. Fig. 2.1 puts into evidence the main variables
involved and how the inventory level varies over time.

Q

Inventory 
level

0
T

Q/a 2Q/a 3Q/a

Q - at

Figure 2.1: Inventory level over time for the basic EOQ model.

Since all cycles are identical — as follows from the definition together with hy-
potheses (i) and (ii) — the average cost per unit time is simply equal to the total cost
incurred in one single cycle divided by the cycle length. Therefore, the experiments
we perform focus on a single cycle, whose length is constant.

Let us examine the terms contributing to the total cost per cycle:

• The costs of producing/purchasing one batch in a cycle is given by

CP (Q) = K + cQ (2.1.1)
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• The holding cost per cycle (say, from t = 0 to t = T ) can be calculated as

CH(Q) = h

∫ T

0

(Q− at)dt = h(QT − 1
2
aT 2) =

hQ2

2a
(2.1.2)

where the integral expresses the inventory available in one cycle.

By adding up the two terms in (2.1.1) and (2.1.2)

CP (Q) + CH(Q) = K + cQ+
hQ2

2a
(2.1.3)

we obtain the total cost occurring in one cycle; finally, the total cost per unit time is
obtained as:

C(Q) =
K + cQ+ hQ2

2a

Q/a
=
aK

Q
+ ac+

hQ

2
. (2.1.4)

The value of Q (say Qo) that minimizes the total cost C is found by setting the
first derivative of the objective function to zero:

∂C

∂Q
= 0⇒ −aK

Q2
+
h

2
= 0⇒ Qo =

√
2aK
h

; (2.1.5)

of course, the negative solution has been discarded, because the order quantity Q
must assume non-negative values. Notice that the second derivative of Qo is strictly
positive, thus guaranteeing that the optimal solution is a minimum, indeed. The
corresponding optimal cost is

Co = C(Qo) =
aK

Qo
+ ac+

hQo
2

=
√

2aKh+ ac ; (2.1.6)

the optimal cycle time is given by

to =
Qo
a

=

√
2K
ah

. (2.1.7)

From the EOQ formula in Eq. 2.1.5 some observations can be pointed out, espe-
cially concerning the influence of some parameters’ variation:

• Being the unit cost of an item c independent on the batch size, it does not
appear in the optimal solution for the order quantity, Qo; therefore, possible
fluctuations in the value of this parameter will not influence the position of the
optimal point.

• Increasing the setup cost K, both Qo, Co and to increase.

• When the unit holding cost h increases, both Qo and to decrease, whereas Co
increases.
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• As the demand rate a increases, both Qo and Co increase but to decreases.

• The curve of the total cost is relatively flat around the minimum cost solution,
thus resulting in being relatively insensitive to small changes in order quantity
w.r.t. the optimal point Qo.

All these aspects will be further investigated through the sensitivity analysis that will
be described later on, in Section 5.1, also supported by a numerical example.

2.1.2 Possible extensions of the basic EOQ model

It is important to point out that the basic EOQ model assumes some simplistic
conditions, that are seldom satisfied in practice. So, starting from this model, it is
possible to formulate some others, which allow us to relax some assumptions moving
towards new models, providing better approximations of real problems.

Holding cost related to the ordering costs

It makes sense to consider the holding cost not as a constant, but as a quantity
depending on the ordering cost by means of a coefficient taking into account the
capital invested in the product, namely the MARR (Minimum Acceptable Rate of
Return); this kind of relationship is expressed through Eq. 2.1.8:

h(Q) = r0 · Q̄
p(Q)
Q

(2.1.8)

where r0 is the MARR and Q̄ is the total inventory available in one cycle (see Eq.
2.1.2). So, the holding cost per cycle is given by:

h(Q) = r0
Q2

2a
K + cQ

Q
= r0

Q

2a
(K + cQ)

Notice that a more realistic assumption on the holding costs would include also an
additive component modelling all the costs for physical handling, warehouse rental,
etc. Then, the total cost per unit time will be obtained as:

C(Q) =
p(Q) + h(Q)

Q/a
= r0

(
K

2
+
cQ

2

)
+
aK

Q
+ ac

Following a procedure similar to that adopted in the basic EOQ model, we can
easily obtain the expression for the optimal batch size as follows:

∂C

∂Q
= 0⇒ r0

c

2
− aK

Q2
= 0⇒ Qo =

√
2aK
r0c

(2.1.9)

Comparing the EOQ formula just obtained with the former one, obtained for the
basic model, it can be noticed that the only difference between the two is in the
denominator, where Eq. 2.1.9 replaces the holding cost coefficient h in Eq. 2.1.5 by
the product r0 c.
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EOQ model with planned shortages

The inventory shortage or stock-out refers to the demand that cannot be currently
satisfied due to the depletion of product stocks. Relaxing the requirement that de-
mand is always met from on hand stock, we now consider a policy where planned
shortages are allowed: this implies that, when a shortage occurs, the affected cus-
tomers will wait for the product to become available again. The backorders are filled
immediately when the order quantity arrives to replenish inventory.

We need to introduce some additional notations: the unit shortage cost per time
unit when shortages occurs, cb, and the inventory level just after a batch of Q units is
added to the inventory, S. So, in this model there are two decision variables, Q and
S; the optimal solution minimizing the total cost per time unit C is found by setting
both the partial derivatives of C (w.r.t. Q and S) to zero, which give the following
results:

Qo =

√
2aK
h

√
cb + h

cb
So =

√
2aK
h

√
cb

cb + h
(2.1.10)

Positive Lead Time

Assuming zero lead time — as the EOQ model does — is clearly unrealistic: in
practice, there will be some time LT > 0 between the placement of an order and its
arrival. Still assuming a constant demand rate a, an order can be placed LT time
units before the current inventory level will drop to zero: i.e. we place an order exactly
in the lead time it takes for the new order to arrive. Therefore, in this case the reorder
point is set to:

s = LT · a ; (2.1.11)

therefore s represents the amount of inventory which will be used up during the lead
time LT . At the beginning of each cycle, the inventory on hand is equal to Q items.
During the cycle, the inventory level decreases at a constant demand rate a — exactly
in the same way observed in the classic EOQ model. When the inventory level equals
the reorder point s, a new order of Q items is placed. After a lead time LT , that is
at the end of the cycle, the new order arrives, just when the inventory runs out of
stock. Then, a new cycle begins with the arrival of the new order of Q units.

Finite Production Rate Model

Another extension of the basic EOQ model is the Economic Manufacturing Quantity
(EMQ) model: this model assumes that an order of stock does not arrive instanta-
neously but instead, stock is produced at a finite rate of ψ items per time unit, where
ψ > a. Here, while production of a batch is underway, stock is accumulating at a rate
of ψ − a per time unit. The total time of production in a cycle is Q/ψ, so that the
peak level of inventory in a cycle is (ψ − a)Q/ψ. The total inventory held in a cycle
is thus (ψ − a)QT/2ψ.
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Proceeding as with the EOQ model, we obtain the optimal batch size Qo as:

Qo =

√
2aKψ
h(ψ − a)

(2.1.12)

which has almost the same form as the EOQ formula, except that the holding cost
coefficient should be defined as

h′ = h

(
1− a

ψ

)
As ψ goes to infinity, Eq. 2.1.12 reduces to the EOQ.

EOQ model with Quantity Discount

The models considered so far were based on the assumption that the unit cost of the
product is the same regardless of the quantity ordered; as a consequence, the optimal
solution turns out to be independent on this parameter. However, this assumption
can be removed, considering the unit cost of an item related to the batch size: in
fact, it is realistic that suppliers offer lower prices for larger orders, thus providing an
incentive to increase the order size. Two kinds of discounts can be considered:

• According to the incremental discount model, we assume that the purchase
price changes at some breakpoint χ, such that the (variable) ordering cost is c0
for any amount up to χ, while — for an order larger that χ — the additional
amount over χ is charged by a rate c1 < c0. Thus, the total ordering cost per
cycle is K + c(Q), where

c(Q) =
{
c0Q 0 < Q ≤ χ
c0 χ+ c1(Q− χ) Q > χ

(2.1.13)

• When adopting an all-units discount policy, if the order size is Q ≥ χ, then the
entire order is priced at the lower rate c1, so that Eq. 2.1.13 slightly changes as
follows:

c(Q) =
{
c0Q 0 < Q < χ
c1Q Q ≥ χ (2.1.14)

2.1.3 Robust formulation

Moving back to the classic EOQ model, it is interesting to extend it to the case where
some parameters are uncertain: in this case, the goal would be to look for an optimal
order quantity, which could guarantee the total cost to be minimum despite possible
fluctuations in the parameters affected by uncertainty.

More specifically, we drop Assumption (i) in Section 2.1, which stated that the
demand is a known constant a. We still assume that the demand rate is constant,
but this constant is unknown. Therefore, according to the terminology introduced by
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Taguchi, we consider the order quantity Q as the decision factor, while the demand
rate a is the environmental factor; all the other parameters are supposed to be known
constants. Many references on inventory management with uncertain parameters are
given by Borgonovo and Peccati (2007).

Note: Yu (1997) also assumes an uncertain demand rate, but uses other criteria
than we do: he either minimizes the maximum costs or minimizes the maximum per-
centage deviation from the optimal cost. Moreover he does not assume a probability
function for the various scenarios (demand rate values), but uses a ‘discrete scenario
set’. Altogether, his approach resembles that of Ben-Tal et al., which we discussed in
Chapter 1.

The assumption of uncertain constants is often made in deterministic simulation
of physical systems; e.g., a nuclear waste-disposal simulation may assume that the
permeability of a specific area is constant but unknown; see Kleijnen and Helton
(1999). An economic example is the exchange rate between the US dollar and the
euro exactly one year from today: that rate is a constant but unknown.

We may collect historical data to infer the probability of the true value of the
parameter a. If there is no such data, then we may ask experts for their opinion
on the true value of the parameter. This knowledge elicitation results in an input
distribution (say) F (a). In practice, several distribution types are used, such as
normal, lognormal, and uniform; see Kleijnen and Helton (1999) and also Gallego
et al. (2007) for inventory problems.

2.1.4 Numerical example

We will apply our methodology to an example from Hillier and Lieberman (2001).
We provide a short description of the problem: a television manufacturing company
produces its own speakers, then used in the production of its television sets. The
television sets are assembled on a continuous production line at a rate of a = 8000
per month, with one speaker needed per set. The speakers are produced in batches,
incurring a setup cost of K = 12000; the unit production cost of a single speaker
is c = 10, independently of the batch size produced. The speakers are placed into
inventory until they are needed for assembly into television sets on the production
line; the estimated holding cost of keeping a speaker in stock is h = 0.30 per month.
The company is interested in determining how many speakers to produce in each
batch, and which will be the corresponding total cost for it. The numerical values of
the parameters are summarized in Table 2.1.

In our experiments we assume — without loss of generality — that a has a Normal
(Gaussian) distribution with mean µa and standard deviation σa:

a ∼ N (µa, σa). (2.1.15)

We assume that µa denotes the nominal value used in the classic EOQ model and σa
quantifies the uncertainty about the true input parameter.
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Table 2.1: Nominal values of the parameters, adopted in the numerical example for
EOQ.

Parameter Symbol Nominal Value
demand rate a 8000
setup cost K 12000
unit ordering cost c 10
unit holding cost h 0.30

2.2 (s, S) Inventory model

2.2.1 Problem description

The (s, S) inventory model aims at determining how many items (of a single product)
should be ordered to satisfy customers demand, during a specified period of (say) N
intervals. The policy states that the inventory is replenished whenever it drops to a
value smaller than or equal to the reorder level s; the order quantity Q is such that
the inventory is raised to the order-up-to level S:

Q =

{
S − I if I ≤ s
0 if I > s

(2.2.1)

where I denotes the inventory level.
Several variations on this model can be found in the literature; some examples

concern the following aspects (see Lee and Nahmias, 1993):

• The review process could be continuous or periodic: in the first case the level
of inventory is known at all times and each demand transaction is recorded
as it occurs; otherwise, the inventory level is known only at discrete time in-
stants, therefore reorder decisions can be made only at the predetermined times
corresponding either to the beginning or to the end of each period.

• The demand size might be deterministic or stochastic.

• The lead time could be zero, constant or random: as already discussed for the
EOQ model, the simplest assumption is that the lead time is zero, but it is not
realistic; therefore, the most common assumption is that the lead time is a fixed
constant: this implies that orders are received in the same sequence as they are
placed. However, we can also assume the lead time to be a random variable:
in such a case, the analysis of the system becomes more complicated, because
orders are allowed to cross in time, that is they might arrive in a different
sequence with respect to the sequence they have been placed (see Bashyam and
Fu, 1998).
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• If the demand cannot be fully satisfied by on-hand stock, then shortages occur:
the excess demand can be either lost or backordered, implying that it will be
satisfied by future deliveries.

• When shortages occur, it is possible to consider a penalty cost for not being able
to satisfy a demand when it occurs: this accounts for the cost of extra record
keeping when a backlog exists, as well as loss of customers’ goodwill.

• In general, penalty costs are difficult to assess; for this reason, service level
measures are introduced: it can be evaluated, e.g., through the proportion of
demands filled from stock; a lack of fill-rate can also be measured, by computing
the fraction of demand on backorder during the period.

Our case study will focus on an infinite horizon periodic review (s, S) inventory
system with full backlogging, continuous-valued independent identically distributed
(i.i.d.) demands and integer-valued i.i.d. random lead times. The sequence of events
that can occur in each period is described as follows:

1. At the beginning of the period orders are received; we emphasize that — given
the randomness in the lead time values — the orders are not received according
to a FIFO (First In First Out) policy. When an order arrives, it is first used to
fulfill the backlogged demand; the remainder of the order (if any) is added to
the inventory.

2. During the period customers’ demands occur: if supply is at least as large as
the demand, then the demand is immediately satisfied; otherwise, the exceeding
demand is backlogged.

3. At the end of the period, the company reviews the inventory level and decides
how many items to order from its supplier. The number of items to be ordered
are determined according to Eq. 2.2.1.

If the company orders Q items, it incurs a cost C = K+cQ, where K is the setup
cost, and c is the incremental cost per item ordered; if Q = 0 no cost is incurred.
The order lead time follows a Poisson distribution. Apart from the ordering costs,
we also take account of holding and shortage costs, which we detail after introduc-
ing some additional notation. We define the inventory level in each period as the
on-hand stock minus backorders; the inventory position is the inventory level plus
outstanding orders. The former is considered to fulfill demand from customers and is
the one determining the holding costs; the latter plays a role in the review process,
to determine whether an order is needed or not. Let Vn be the inventory level in
period n before demand subtraction and Wn be the inventory level in period n after
demand subtraction; then Vn = Wn + Dn, where Dn is the demand in period n.
Bn = Dn −min(Dn, Vn) denotes the demand in period n not satisfied from on-hand
stock, i.e. the backorder. The inventory position in period n is denoted by In. We
assume that the company incurs a holding cost of h per item per period held in in-
ventory. Similarly, a backlog cost of cb per item per period in backlog is assumed.



28 Chapter 2

The total cost in each period is given by the sum of the holding cost, the ordering
cost (including setup costs) and the shortage cost incurred during the observed time
period n:

Cn = hW+
n + IIn≤s [K + c(S − In)] + cb (Dn −min(Dn, Vn)) , (2.2.2)

where W+
n = max(0,Wn) and I(·) denotes the indicator function.

We assume that the initial inventory level is I(0) = S and that no order is out-
standing.

The objective of the classical optimization problem is to determine the optimal
policy allowing to achieve the minimum total cost over the planning horizon.

Constrained formulation for the simulation-optimization problem

Based on the discussion at the beginning of the section, we can slightly reformulate
the problem presented before as follows: we do not consider any shortage costs, since
obtaining a “reliable” estimation of this parameter is not an easy task; therefore, the
total cost in each period will be determined only by holding and ordering costs. A
service level constraint is introduced to account for the ‘cost’ of losing customers’
goodwill; more specifically, we adopt the so-called γ-service level, which is defined
such that

1− γ =
∑N
n=1Bn∑N
n=1Dn

. (2.2.3)

This measure is also adopted in Bashyam and Fu (1998), by complementing the fill-
rate measure considered in Tijms and Groenevelt (1984). Based on (2.2.3), we solve
the problem of minimizing the total cost guaranteeing that the service level is not
smaller than a prescribed value.

2.2.2 Possible extensions of the basic (s, S) model

As the assumptions of the basic (s, S) model are frequently satisfied, it is widely used
in practice. However, starting from this model, it is easy to formulate some others,
which allow us to relax some assumptions moving towards new models in order to
give a better representation of a specific real problem. Indeed, a first extension is
represented by the introduction of the service level as an additional objective or
constraint. In what follows we consider some other possible extensions of the basic
(s, S) model.

Inventory record inaccuracy

Inventory record inaccuracy is a quite common problem in the industrial practice
(Fleish and Tellkamp, 2005; Kök and Shang, 2007). Although companies have abun-
dantly invested to automate and improve their inventory management processes, in-
ventory records and physical inventory are seldom aligned. There are several reasons
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for these discrepancies: stock loss or shrinkage, transaction errors, and product mis-
placement. Such misalignment may create significant problems and losses for compa-
nies. The direct effect of inventory record inaccuracy is losses resulting from ineffective
inventory order decisions. In fact, when an out-of-stock item is reported as in stock,
an automated replenishment system may not reorder that product, which may result
in higher backorder penalties or lost sales. On the other end, if the records show fewer
items than the physical inventory level, more items will be ordered of that product,
leading to higher inventory costs. A stochastic model of this inaccuracy could be
included in the inventory representation based on the (s, S) model. To model such
inaccuracy both aleatory and epistemic aspects of the uncertainty could be consid-
ered. Of course they will be related to the organization of the inventory management
and the available technology (Fleish and Tellkamp, 2005; Kök and Shang, 2007).

Space Constraint

The continuous-review inventory policies are popular in inventory management. In
such cases, the system is continuously monitored, and whenever the inventory position
drops to or below a given level, a certain amount of units of goods is ordered to
replenish the system. To be able to implement the policy, the system needs a storage
space capable to store the maximum inventory. In real systems resources such as
the storage space are usually limited (Allgor et al., 2005; Gallego and Scheller-Wolf,
2000; Zhao et al., 2007). Then, an issue in planning and operations management is
the optimal inventory policy with capacitated storage space. This extension of (s, S)
model could be relevant in multi-item and multi-stage inventory systems (Allgor et al.,
2005), and in cases characterized by inventory record inaccuracy (Kök and Shang,
2007; Zhao et al., 2007).

Setup Variability

Traditionally, inventory models assume that setup costs are constant. However, in
practice, setup costs may vary and they could be another source of uncertainty in
the (s, S) model (Darwish, 2008; Sarker and Coates, 1997). As reduced setup costs
with the accompanying possibility of smaller lot sizes have numerous organizational
and economic benefits, companies are often active in pursuing such reductions. These
companies investments and efforts to reduce setups lead to learning-forgetting models
for the setup cost (Darwish, 2008; Sarker and Coates, 1997). These models introduce
a deterministic or stochastic variability in the setup costs and, at the same time, the
need to consider both aleatory and/or epistemic uncertainties.

2.2.3 Robust formulation

In order to deal with the robustness issue in the simulation-optimization of the (s, S)
inventory model, we have to tackle some sources of uncertainty: more specifically,
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we have to distinguish aleatory and epistemic uncertainty, as discussed in the Intro-
duction of this thesis. Given the stochasticity of the model under study, accounting
for the aleatory uncertainty and ignoring the epistemic uncertainty implies that the
demand and lead time random variables belong to some specified distributions, with
known parameters. A classic optimization approach like the one described in the
previous subsection would deal with such a case.
Robustness, however, may ask for one step further: we consider the epistemic uncer-
tainty affecting the parameters of the distributions for demand and lead time, which
are not supposed to be constant values anymore; these parameters, instead, can take
any value within a given interval, according to a so-called prior distribution. If we
assume to have collected historical data on the random variables of interest for a
reasonably large period of time, then we can select a normal distribution as a prior
distribution for our random variables, by virtue of the Central Limit Theorem.

2.2.4 Numerical example

We will perform our experiments based on a model that was originally studied by
Bashyam and Fu (1998). This model assumes that the size of customers’ demand
per time period is exponentially distributed with mean λD = 100 units; delivery lead
times are Poisson distributed with mean λL = 6 time periods.

Initially, I0 = S items are on hand. The range for the reorder point is 900 ≤ s ≤
1250 and that for the order-up-to level is 901 ≤ S ≤ 1750 (where the lower bound for
S is fixed in order to satisfy the implicit constraint that S > s).

The setup cost is K = 36, the incremental ordering cost per item is c = 2, the
holding cost is h = 1 per item per period and the shortage cost is cb = 5 per item per
period.

The system is observed for N = 30000 periods, as this was proved to be sufficient
to achieve steady-state conditions (see Bashyam and Fu, 1998). We make m = 10
independent replications of the simulation for all the input combinations (s, S).

The numerical values of the parameters are summarized in Table 2.2.

Table 2.2: Nominal values of the parameters in the numerical example for (s, S)
model.

Parameter Symbol Nominal Value
mean demand size λD 100
mean lead time λL 6
setup cost K 36
unit ordering cost c 2
unit holding cost h 1
unit shortage cost cb 5

For the ‘epistemic’ robust formulation, the parameters of the prior normal dis-



Case Studies 31

tribution are defined such that µi denotes the nominal value of the corresponding
random variable (demand or lead time) used in the classic version of the (s, S) model
and σi quantifies the uncertainty about the true input parameter.
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Chapter 3

Robustness combining
Taguchi’s method and RSM

This chapter is devoted to describe a methodology to achieve robustness in simulation-
optimization, combining Taguchi’s view of the uncertain world and the Response
Surface Methodology (RSM) to provide approximation of the (possibly) expensive
simulation model.
The chapter is structured as follows: Section 3.1 summarizes the main aspects char-
acterizing the RSM technique — mainly focussing on second-order regression models,
since these are the ones we will use in our experiments. Then, a possible scheme
to use RSM metamodels within an optimization process is mentioned. Finally, a
novel approach is proposed in Section 3.2, basically inspired by Myers and Mont-
gomery (2002) but removing some restrictive assumptions: in this way, we keep the
methodology more widely applicable; Dellino et al. (see 2008a). The computational
experiments will be described in Chapters 5 and 6. Section 3.3 adds some comments
on the normality distribution which is often assumed for the simulation output.

3.1 Response Surface Methodology (RSM)

Response Surface Methodology (RSM) is a method proposed by Box and Wilson
(1951), originally applied to real (i.e., non-simulated systems): based on a sequential
procedure, it aims at optimizing the output function of the system through a local
approximation model which is valid over a small region identified by properly designed
experiments. Typically, RSM locally fits low order polynomial regression models.
Then, for a minimization (resp. maximization) problem a steepest descent (resp.
ascent) search algorithm is adopted to explore the experimental region moving towards
more promising (sub)areas to find the optimum. Notice that in the following we will
not consider the iterative search phase, assuming that it has already been performed
leading to the experimental region we will be working on; in the remainder of the
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dissertation we will refer to such approach as a simplified RSM.
The general expression for a second-order regression model is:

y = β0 +
n∑
j=1

βjxj +
n∑
j=1

n∑
j′≥j

βj;j′xjxj′ , (3.1.1)

where n is the size of the input design space, i.e., the number of input variables xj .
Eq. 3.1.1 can be written also in a more compact form:

y = Xβ , (3.1.2)

where X is the n× q matrix of explanatory variables, with q denoting the number of
parameters collected in β; β is the vector of the regression parameters, whose elements
should be defined according to the form of the X matrix. This X is assumed not to
be collinear (otherwise, (X′X)−1 would not exist). So a necessary but not sufficient
condition for X is n > q. The matrix X can be column-partitioned as follows:[

1 x1 x2 . . . xn x2
1 . . . x2

n x1x2 . . . xn−1xn
]
. (3.1.3)

An estimation of the vector β is usually provided by the so-called Ordinary Least
Squares (OLS) method, which solves the following problem:

min
β̂

∥∥∥w −Xβ̂
∥∥∥2

2
, (3.1.4)

where the vector w consists of the n simulation outputs. Therefore, setting the
gradient of the objective function to zero, we obtain an explicit formula for the OLS
estimate:

β̂ = (XTX)−1XTw . (3.1.5)

In practice, Eq. 3.1.5 is not directly used to solve the problem; instead, the computa-
tion of the OLS estimate β̂ is usually performed by solving the following linear system
of equations:

XTXβ̂ = XTy , (3.1.6)

which is referred to as the set of normal equations for the problem in Eq. 3.1.4. Dif-
ferent numerical methods can be used to solve Eq. 3.1.6, and the choice among them
needs to be carefully evaluated, since some problems related to numerical accuracy
might arise (see Nocedal and Wright, 2006). We adopt the QR factorization of the
matrix XTX: as Nocedal and Wright (2006) point out, this method is usually reli-
able, because the solution found is affected by a relative error which is proportional
to the condition number of XTX. However, some situations might require a more
robust method, namely the Singular Value Decomposition (SVD) approach, which
is computationally expensive, but can provide some useful information for particular
problems; see Nocedal and Wright (2006) for more details. In our experiments, we
monitor the condition number of the matrix XTX, to check the numerical accuracy
of the results we obtain.
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3.1.1 Classic simulation-optimization using simplified RSM

Once a second-order regression model has been fitted, according to Eq. 3.1.1, it can
be used in a classic simulation-optimization problem, assuming no uncertainty in the
parameters: the procedure usually adopted in such a context is outlined in Fig. 3.1.
Notice that step 5 asks for choosing a solver enabling the use of a metamodel as the
objective function.

Classic Simulation-Optimization with simplified RSM

Input: Design of Experiments D = (xij), xi ∈ Rn, (i = 1, . . . ,m);
begin

for each design point xi in D, i = 1, . . . ,m
1a. Run the simulation model
1b. Compute wi = f(xi)

2. Fit a regression metamodel for the response, ŷ
3. Validate the metamodel, using leave-one-out cross validation
4. Test the importance of the estimated effects, using t-statistics
5. Solve the optimization problem

end

Figure 3.1: Classic simulation-optimization process using regression metamodels.

Besides some steps discussed in the next Section, we will not further analyze this
topic, which is extensively examined in Myers and Montgomery (2002). However, it
was worth mentioning this simple procedure before moving to the robust approach,
where uncertainty on some input factors is taken into account.

3.2 RSM and robust optimization

Based on what discussed in Chapter 1, we adopt the Taguchian view of the uncertain
world — without restricting our attention to the statistical techniques he proposed,
mainly based on computing SNRs as a measure of robustness and crossed-array de-
signs (see Nair et al., 1992; del Castillo, 2007). Therefore, we distinguish between
control or decision factors and noise or environmental factors, according to the defi-
nition given in Chapter 1; we recall that we denote the control factors by d while the
environmental factors are denoted by e.

Fig. 3.2 briefly sketches the main steps of our Robust Optimization (RO) proce-
dure, combining Taguchi’s method and RSM. Each step is detailed in what follows.

Before building any approximation model, we need to properly design the experi-
ments in the input space according to some sampling techniques based on Design of
Experiments (DoE); different types of DoE can be adopted but this discussion lies
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Robust Optimization combining Taguchi & simplified RSM

Input: design (D, nd × ne) in the control-by-noise space (d, e);
probability distribution of noise factors;

begin
for each design point (dj , ej) in D, j = 1, . . . , nd × ne

1a. Run the simulation model
1b. Compute wj = f(dj , ej)

2. Fit a regression metamodel for the mean of the response, ŷ, and one for its standard
deviation, σ̂y

3. Validate the metamodels, using leave-one-out cross validation
4. Test the importance of the estimated effects, using t-statistics
5. Estimate the Pareto frontier, solving constrained optimization problems
for each b ∈ {1, . . . , B}

6. Apply parametric bootstrap on the regression coefficients
Repeat step 5 B times, using the bootstrapped values of the coefficients

end

Figure 3.2: Robust Optimization approach through RSM.

beyond the scope of the present work (see Montgomery, 2009). When planning an
experiment, we should distinguish between the following three kinds of regions:

• The region of operation is the complete space defined by the input factors xi,
in their original units; it represents the entire area over which the experiments
can theoretically be conducted.

• Usually, some physical or safety constraints are defined over the region of op-
eration, thus restricting the area to explore through the experiments to the
so-called region of interest.

• We further distinguish the region of interest from the experimental region, that
is defined by the ranges of the input factors once the experiment has been
designed. Notice that the experimental region should resemble the region of
interest.

We will adopt this terminology throughout the dissertation; for further details, refer
to del Castillo (2007).
At this stage, we adopt two separate designs for decision and environmental factors:
in particular, we pick ndj equally spaced values for the decision factor dj and we
sample ne values for each environmental factor ek from its corresponding probability
distribution — which is assumed to be known. More specifically, we sample the en-
vironmental factors values using Latin Hypercube Sampling (LHS), whose algorithm
is briefly described in the following:
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1. Divide the experimental range of each factor ek into ne intervals of equal
marginal probability 1/ne.

2. Sample one value from each interval, according to the probability density func-
tion over that interval; let this sample be denoted as ekl, l = 1, . . . , ne.

3. The components of the various ek’s are matched together by associating a ran-
dom permutation of the first ne integers with each variable.

It is important to notice that sometimes we may have to deal with truncated ran-
dom variables, that is random variables which follow a given probability distribution,
but they are forced to stay above and/or below some specified values. In such a case,
we can explicitly compute the truncated distribution by observing that

f(x|xL < x < xU ) =
f(x)

P (xL < x < xU )
, (3.2.1)

where f(x) is the probability density function (pdf) of the original (i.e., not trun-
cated) random variable, and xL and xU are the lower and upper truncation point,
respectively. If xL is replaced by −∞, or xU by +∞, the distribution is singly trun-
cated from above, or below, respectively; nevertheless, the results discussed in the
following remain valid, after some simplifications.
Suppose, for instance, that an environmental factor follows a Normal distribution,
e ∼ N (µ, σ2), but it can only take values between eL and eU ; therefore:

P (eL ≤ e ≤ eU ) = P (e ≤ eU )− P (e ≤ eL) =

= Φ
(
xU − µ
σ

)
− Φ

(
xL − µ
σ

)
= Φ(zU )− Φ(zL) ,

(3.2.2)

where zU = (xU −µ)/σ, zL = (xL−µ)/σ and Φ(·) is the standard normal cumulative
distribution function (cdf). The pdf of the truncated normal distribution is then:

ftr(e) = f(e|eL < e < eU ) =
f(e)

Φ(zU )− Φ(zL)
=

(2πσ2)−1/2e
− (x− µ)2

2σ2

Φ(zU )− Φ(zL)
=

=
σ−1ϕ

(
x− µ
σ

)
Φ(zU )− Φ(zL)

,

(3.2.3)

where ϕ(·) is the standard normal pdf. More specifically, to take into account that
the truncated pdf is defined only for eL < e < eU , we can use the following compact
notation:

ftr(e) =
σ−1ϕ

(
x− µ
σ

)
Φ(zU )− Φ(zL)

I(eL,eU )(e) , (3.2.4)
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where I(eL,eU )(x) denotes the indicator function.
Further details on truncated distributions can be found in Greene (2003) and Johnson
et al. (1994).

After deriving the analytical expression for the truncated distribution, we have to
implement the algorithm to sample values from it, according to LHS. The sampling
technique is described in Iman et al. (1979) and we follow the approach suggested
by Stein (1987), since it results in an efficient algorithm implementation. The main
steps for producing a LHS design of size N are described in what follows, assuming
that we have K input variables, and Fk denotes the cdf of the k-th variable:

i. Generate the N ×K matrix P = (pnk), n = 1, . . . , N, k = 1, . . . ,K, where each
column of P is an independent random permutation of {1, . . . , N}.

ii. Generate the N ×K matrix Ξ = (ξnk), n = 1, . . . , N, k = 1, . . . ,K, where ξnk
is a random number, uniformly distributed on [0, 1].

iii. Each sample is obtained as

xnk = F−1
k

(
1
N

(pnk − 1 + ξnk)
)
. (3.2.5)

Notice that, despite the description of the algorithm given before, the implementation
does not require to explicitly compute the extreme points of each interval. For further
details, refer to Iman et al. (1979).
Eq. 3.2.5 implies that we need to derive the inverse cdf for the truncated normal
distribution. Based on Eq. 3.2.4 and observing that the denominator is a constant
for known truncation point, we can simply rewrite this equation as

ftr(x) =
{
c1 · f(x) if xL ≤ x ≤ xU
0 elsewhere = c1 · f(x)I(xL≤x≤xU )(x) ,

where c1 = 1/(Φ(zU ) − Φ(zL)). Therefore, it follows that the truncated cdf is easily
derived as follows:

Ftr(x) =
∫ x

−∞
ftr(y)dy = c1

∫ x

xL

f(y)dy = c1[F (x)− F (xL)] = c1F (x)− c2 , (3.2.6)

where c2 = c1F (xL) = Φ(zL)/ (Φ(zU )− Φ(zL)).
Now we have to invert Ftr(x), given that F−1(x) is known. Using the definition

of the inverse function, it follows — after a few algebraic computations — that:

F−1
tr (p) = F−1

(
p+ c2
c1

)
. (3.2.7)

After obtaining the designs for the decision and environmental factors, we “crossed”
them, according to the Taguchian terminology: this implies that we merge each com-
bination of the decision factors with each combination of the environmental factors;
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the overall design therefore results in a nd × ne matrix of (decision × environmental)
factor combinations.

The factor combinations resulting from the DoE are then used as inputs to the
simulation model, which we implement using Rockwell’s Arena simulation software
(see Kelton et al., 2007). The simulation runs produce a set of input/output (I/O)
combinations which are used to build a metamodel.

To analyze our simulation experiments we use RSM following Myers and Mont-
gomery (2002). RSM extends Taguchi’s simpler statistical techniques — as discussed
in Chapter 1. The simplest RSM metamodel is a polynomial of degree as low as
possible:

• Because we wish to estimate the optimal combination(s) of the decision factors
dj (j = 1, . . . , nd), we fit a second-order polynomial for these factors.

• Moreover, we wish to model possible effects of the environmental factors ek
(k = 1, . . . , ne); we fit a first-order polynomial for these factors.

• Finally, we wish to estimate interactions between the two types of factors, so we
fit ‘control-by-noise’ two-factor interactions. Notice that interaction between dj
and ek implies nonparallel response surfaces for dj — given different values for
ek.

Altogether Myers and Montgomery (2002) propose the following metamodel:

y = β0 +
nd∑
j=1

βjdj +
nd∑
j=1

nd∑
j′≥j

βj;j′djdj′ +
ne∑
k=1

γjej +
nd∑
j=1

ne∑
k=1

δj;kdjek + ε

= β0 + β′d + d′Bd + γ′e + d′∆e + ε ,

(3.2.8)

where y denotes the regression predictor of the simulation output w, ε denotes the
residual with E(ε) = 0 if this metamodel has no lack of fit (this zero mean should be
tested; see cross-validation below) and constant variance σ2

ε (an unrealistic assumption
in simulation experimentation), and the bold symbols are the vectors and matrices
that are defined in the obvious way (e.g., β = (β1, . . . , βnd

)′ and B denotes the nd×nd

symmetric matrix with main-diagonal elements βj;j and off-diagonal elements βj;j′/2).
It is convenient and traditional in DoE to use coded — also called standardized or

scaled — factor values. Let the ‘original’ factor be denoted by ξ (ξ corresponds with
dj or ek in (3.2.8)); then the coded variable x use the linear transformation

x =
ξ − ξlb
ξub − ξub

(xub − xlb) + xlb , (3.2.9)

where [ξlb, ξub] is the original range and [xlb, xub] is the range we want to map ξ into,
i.e. it gives the interval where the coded variable x will range. Being interested in
coding the original variables into the interval [−1,+1], the adopted coding scheme
can be simplified as follows:

x = a+ bξ with a =
xlb + xub
xlb − xub

and b =
2

xub − xlb
. (3.2.10)
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If ξ is a random variable (like e), then this coding implies var(x) = b2var(ξ). The
numerical accuracy of the estimates may be affected by coding; we focus on the
estimated effects of the coded variables. Coding is further discussed by Kleijnen
(2008).

Assuming a model like (3.2.8), Myers and Montgomery (2002) derive the mean
and the variance of y (the regression predictor of the simulation output w), after
averaging over the noise factors — and assuming that the environmental variables e
satisfy

E(e) = 0 and cov(e) = σ2
eI . (3.2.11)

Given (3.2.11), they derive

E(y) = β0 + β′d + d′Bd (3.2.12)

and
var(y) = σ2

e(γ′ + d′∆)(γ + ∆′d) + σ2
ε = σ2

e l
′l+σ2

ε , (3.2.13)

where l = (γ + ∆′d) = (∂y/∂e1, . . . , ∂y/∂ec)′; i.e., l is the gradient with respect to
the environmental factors — which follows directly from (3.2.8). So, the larger the
gradient’s elements are, the larger the variance of the predicted simulation output is
— which stands to reason. Furthermore, if ∆ = 0 (no control-by-noise interactions),
then var(y) cannot be controlled through the control variables d.

Equation (3.2.13) implies that the predicted simulation output y has heterogeneous
variances — even if σ2

e and σ2
ε were constants — because changing the control factors

d changes var(y). Whereas Myers and Montgomery (2002) present examples with
σ2
e = σ2

ε /2, Kleijnen (2008) gives a supply-chain simulation model with σ2
e = 10σ2

ε .
Most important is the gradient l, because it shows the key role played by the control-
by-noise interactions; i.e., to reduce the predicted output’s variance var(y)(or σ2

y) the
analysts should take advantage of the interactions ∆; they cannot control the main
effects of the noise factors (γ) and the variances of the noise factors and the residuals
(σ2
e and σ2

ε ). For example, if a particular decision factor (say, d1) has no effects on the
mean output (so β1 = β1;1 = β1;2 = . . . = β1;k = 0) but has important interactions
with the noise factors (e.g., δ1;2 � 0), then this interaction can be utilized to decrease
the output variance (e.g., decrease σ2

y by decreasing d1). If there are multiple decision
factors, then the following solution method may be tried:

1. select the values of some decision factors such that l = 0, so var(y) in (3.2.13)
is minimized;

2. select the remaining decision factors such that the predicted mean output E(y)
in (3.2.12) gets the desired value.

Obviously, assuming zero means and constant variances could be unrealistic, so
we replace Myers and Montgomery’s assumption formulated in Eq. 3.2.11 by the
following:

E(e) = µe and cov(e) = Ωe. (3.2.14)
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Then Eq. 3.2.12 becomes

E(y) = β0 + β′d + d′Bd + γ′µe + d′∆µe (3.2.15)

and Eq. 3.2.13 becomes

var(y) = (γ′ + d′∆)Ωe(γ + ∆′d) + σ2
ε = l′Ωel + σ2

ε . (3.2.16)

Hereinafter, we will not take account of Eqs. 3.2.12-3.2.13 anymore.
To estimate the unknown (regression) parameters in (3.2.8) — which also gives the

parameters in the mean and variance equations (3.2.15) and (3.2.16) — we reformulate
(3.2.8) as the following linear regression model :

y = ζ′x + ε (3.2.17)

with ζ = (β0,β,b,γ, δ)′ where b denotes the vector with the nd× (nd−1)/2 interac-
tions between the decision factors plus their nd purely quadratic effects, and δ denotes
the nd × ne control-by-noise interactions; x is defined in the obvious way (e.g., the
element corresponding with the interaction effect β1;2 is d1d2). The regression coeffi-
cients are estimated through the OLS given in Eq. 3.1.5, using the regress function
from the MATLAB Statistics Toolbox (see The MathWorks Inc., 2005b). Notice that
in this case the matrix of explanatory variables, X, involves both decision and en-
vironmental factors: thus, here n denotes the number of scenarios (combinations of
decision and environmental factors) determined by DOE that are actually simulated.

To estimate the left-hand side of (3.2.15), we simply plug in the estimators for β0,
β, B, γ, and ∆ in the right-hand side (the factors d and µe are known). To estimate
the left-hand side of (3.2.16), we again use plug-in estimators—now for γ, ∆, and σ2

ε

(the factor Ωe is known because the environmental factors are sampled from a known
distribution); see Myers and Montgomery (2002).

In order to apply classic OLS results, we assume that σ2
w is constant, the out-

puts for different scenarios are independent, and the environmental factors are fixed
(Myers and Montgomery (2002) do not make these assumptions explicit; in our EOQ
application, where we are interested in optimizing mean and variance of the total
cost, we can derive the true Pareto optimum corresponding to these two objectives,
so we can verify how sensitive our analysis is to these assumptions). Then the classic
estimator of σ2

ε is the Mean Squared Residuals (MSR)

MSR =
SSR

n− q
=
∑n
i=1(yi − ŷi)2

n− q
=

(y −Xζ̂)T (y −Xζ̂)
n− q

, (3.2.18)

where SSR =
∑n
i=1(yi − ŷi)2 defines the Sum of Squared Residuals, y is the vector

of observed values for the output function and ŷ = Xζ̂ is the vector of estimated
values according to the regression model; (n− q) are the degrees of freedom left after
fitting the model, with q expressing the number of regression coefficients (including
β0); also see Kleijnen (2008). It should be noticed that the estimate of σ2

ε provided
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by the MSR in (3.2.18) is model dependent, since it depends on the structure of the
model used to fit the data; nevertheless Myers and Montgomery (2002) point out that
if replicates are available — as it happens when working on random simulations —
then a model independent estimate of σ2

ε can be obtained.
We point out that (3.2.16) has products of unknown parameters, so it implies a

nonlinear estimator σ̂2
y (we are also interested in σ̂y =

√
σ̂2
y, a nonlinear transfor-

mation of σ̂2
y) so this plug-in estimator is certainly biased; we ignore this bias when

estimating the Pareto frontier that balances ŷ and σ̂y.
The estimation of the mean and variance of the simulation output through (3.2.15)

and (3.2.16) raises the following crucial question (also raised by Myers and Mont-
gomery (2002), but assuming a constant output variance): is the underlying RSM
model (3.2.8) an adequate approximation? The linear regression literature presents
several methods for answering this question; see Kleijnen (2008). We focus on a
method that is also applied outside linear regression (e.g. in Kriging), namely cross-
validation. There are several variations on cross-validation (see Iooss et al. (2007)
and Meckesheimer et al. (2002)), but the most popular variant is leave-one-out cross-
validation. Following Kleijnen (2008), we define this cross-validation as follows:

1. Delete I/O combination i from the complete set of n combinations, to obtain
the remaining I/O data set — denoted by (X−i,w−i). Assume that this step
results in an (n − 1) × q noncollinear matrix X−i (i = 1, . . . , n); a necessary
condition is n > q. Obviously, w−i denotes the (n− 1)-dimensional vector with
the remaining (n− 1) simulation outputs.

2. Recompute the OLS estimator of the regression parameters in (3.1.5):

ζ̂−i = (X′−iX−i)
−1X′−iw−i . (3.2.19)

3. Use ζ̂−i (recomputed regression parameters) to compute ŷ−i, which denotes the
regression predictor of the simulation output generated by xi (which corresponds
with the simulation input of the combination deleted in step 1):

ŷ−i(xi) = x′iζ̂−i . (3.2.20)

4. Repeat the preceding three steps, until all n combinations have been processed.
This results in n predictions ŷ−i (i = 1, . . . , n).

5. Use a scatterplot with the n pairs (wi, ŷ−i) to judge whether the metamodel is
valid, where wi denotes the simulation output at xi.

6. Because the scaling of this scatterplot may give the wrong impression, we also
evaluate the relative prediction errors ŷ(−i)/wi.
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7. A valid regression model also implies that the estimated regression coefficients
do not change much when deleting an I/O combination; i.e., there is not much
change in ζ̂−i with (i = 0, 1, . . . , n) where ζ̂−0 denotes the estimator when zero
combinations are deleted, so ζ̂−0 = ζ̂.

When the simulation model is stochastic (instead of being deterministic), it is
strongly recommended to make several independent runs (i.e. replications) of the
simulation for each input combination. Although it is not of interest at this stage to
further detail this topic — which will be discussed in Chapter 6 — it is important to
mention that, when replications are available, the cross-validation procedure described
before remains applicable, after replacing the output wi corresponding to the i-th
input combination xi by the average

w(xi) =
1
m

m∑
r=1

wr(xi) , (3.2.21)

where m denotes the total number of replications and wr(xi) is the simulation output
for the i-th input combination xi in the r-th replication.
We also point out that having replicated output data allows an alternative evaluation
of the metamodel accuracy w.r.t. the one proposed in step 5, based on the Studentized
prediction error, as proposed by Kleijnen (1983a): for the i-th combination xi left out
during the cross-validation procedure we compute

t
(i)
m−1 =

w(xi)− ŷ−i(xi)√
̂var(w(xi)) +

̂
var(ŷ−i(xi))

i = 1, . . . , n (3.2.22)

where w(xi) and ŷ−i(xi) are given by (3.2.21) and (3.2.20) respectively,

̂var(w(xi)) = ̂var(w(xi))/m , (3.2.23)

̂var(w(xi)) =
1

m− 1

m∑
r=1

(
wr(xi)− w(xi)

)2

, (3.2.24)

and

̂
var(ŷ−i(xi)) = x′i

̂cov(ζ̂−i)xi , (3.2.25)

̂cov(ζ̂−i) = ̂var(w(xi))
(
X′−iX−i

)−1
. (3.2.26)

Computing (3.2.22) for each input combination di (i = 1, . . . , n), the regression meta-
model is rejected if

max
i

t
(i)
m−1 > tm−1;1−α/(2n) , (3.2.27)
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where the right-hand side follows from Bonferroni’s inequality ; for further details,
refer to Kleijnen (2008).

Besides cross validation, we also perform a test on individual regression coeffi-
cients, which Myers and Montgomery (2002) suggest to be useful in determining the
value of each of the structure of the regression model. We assume that the simulation
outputs w are normally distributed; i.e., we assume that the environmental variables
e and the noise ε in (3.2.8) are normally distributed. The OLS estimator ζ̂ in (3.1.5)
is then also normally distributed. Consequently, the individual estimated regression
parameters ζ̂j may be tested through the following t-statistic:

t0 =
ζ̂j√
σ̂2
εCjj

(3.2.28)

where ζ̂j is the OLS estimate of the coefficient ζj and Cjj is the j-th diagonal element
of the matrix (XTX)−1. It can be noted that the denominator in Eq. 3.2.28 represents
the square root of the j-th element on the main diagonal of the covariance matrix for
ζ̂ given by

cov(ζ̂) =(X′X)−1σ2
w . (3.2.29)

with σ2
w assumed to be constant and estimated through the MSR defined in (3.2.18).

The null hypothesis H0 : ζj = 0 is rejected if

|t0| > t1−α/2,n−q . (3.2.30)

It is well-known that the t-statistic is not very sensitive to nonnormality; see Kleijnen
(1987).
Using the results from the t-statistics, we also compute the confidence intervals for
each regression coefficient, derived as follows:

ζj ∈
[
ζ̂j − t1−α/2,n−q

√
σ̂2
εCjj , ζ̂j + t1−α/2,n−q

√
σ̂2
εCjj

]
(3.2.31)

Myers and Montgomery (2002) keep only the significant effects in their response
model. We agree that when estimating the robust optimum, we should use the reduced
metamodel, which eliminates all non-significant effects in the full model — except for
those non-significant effects that involve factors that have significant higher-order
effects; e.g., if the estimated effect β̂1 is not significant but the estimated quadratic
effect β̂1;1 is, then β̂1 is not set to zero. We point out that the (possibly non-significant)
OLS estimator is the Best Linear Unbiased Estimator (BLUE) so we must have good
reasons to replace it by zero (also see the ‘strong heredity’ assumption in Wu and
Hamada (2000)). The reduced metamodel could make the optimization process faster,
because it may imply a unique optimum, whereas the full metamodel may suggest
(say) a saddlepoint. To find the unimportant effects, Myers and Montgomery (2002)
use ANalysis Of VAriance (ANOVA). Note that t2n−q = F1;n−q; the F statistic is used
in ANOVA.
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Our final goal in robust optimization is to solve a multiobjective optimization
problem, minimizing both the estimated mean ŷ and the estimated standard devia-
tion σ̂y — assuming that (3.2.15) and (3.2.16) are adequate approximations. More
specifically, we adopt the ε-constraint method, a classical technique to solve optimiza-
tion problems with multiple criteria (see Miettinen, 1999): therefore we formulate the
problem as a constrained minimization problem, where we minimize the estimated
mean ŷ, while keeping the estimated standard deviation σ̂y below a given threshold
T . This gives the values of the ‘estimated robust decision variables’ (say) d̂+ and

its corresponding mean ŷ+ and standard deviation σ̂+
y . Next, we vary the threshold

value T (say) 100 times, which may give a different solution d̂+ with its corresponding

ŷ+ and σ̂+
y . Then, we collect the 100 pairs (ŷ+, σ̂+

y ) to estimate the Pareto frontier.
Myers and Montgomery (2002) also discuss constrained optimization, which mini-

mizes (e.g.) the variance (3.2.13) subject to a constraint on the mean (3.2.12). Often
those authors simply superimpose contour plots for the mean and variance, to select
an appropriate compromise or ‘robust’ solution. We shall use Mathematical Program-
ming, which is more general and flexible.

To construct confidence intervals for the robust optimum Myers and Montgomery
(2002) assume normality, which results in an F statistic. Myers and Montgomery
(2002) notice that the analysis becomes complicated when the noise factors do not
have constant variances. We shall therefore use parametric bootstrapping of the esti-
mated regression parameters that gave ŷ and σ̂y, in order to estimate the variability
of the Pareto frontier. By definition, parametric bootstrapping assumes that the dis-
tribution of the relevant random variable is known.
More specifically, we sample — via the Monte Carlo method, using pseudo-random
numbers —(say) B times from the multivariate — namely q-variate — normal distri-
bution with mean vector and covariance matrix given by (3.1.5) and (3.2.29):

ζ̂
∗
∼ Nq(ζ̂, (X′X)−1σ̂2

w) (3.2.32)

where the superscript ∗ is the usual symbol for bootstrapped values. This sampling
gives ζ̂

∗
b (b = 1, . . . , B). This ζ̂

∗
b gives ŷ∗b ; see (3.2.15) with β0, β, B, γ, and ∆ replaced

by their bootstrapped estimates (i.e., estimates computed from the bootstrapped ŷ∗b ).
It also gives σ̂y∗b ; see (3.2.16) where σ2

ε is replaced by the estimate computed from
the bootstrapped parameters. These two bootstrapped regression models ŷ∗b and σ̂y∗b
are used into the optimization process to obtain the bootstrapped optimal decision
vectors d̂+∗

b , which are computed through the fmincon function from the MATLAB
Optimization Toolbox (see The MathWorks Inc., 2005a). This bootstrap sample gives
a bundle of B estimated Pareto frontiers.

Note: Though we focus on estimating the variability of the Pareto curve, we could
also have estimated the variability of the solution of the robust optimum problem. So
the B bootstrap regression parameters ζ∗ gives B values for d+ and the corresponding
y+ and s(C)+. These B values can be used to derive a CI; see Efron and Tibshirani
(1993).
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In general, bootstrapping is a simple numerical/computerized method for obtain-
ing the Estimated Density Function (EDF) of a — possibly complicated — statistic
for a — possibly non-Gaussian — parent distribution. Examples are the well-known
Student statistic for a non-Gaussian parent distribution, and the statistic that is
formed by the solution of a Nonlinear Programming problem with Gaussian inputs
(as is the case for our study). More details are given by Efron and Tibshirani (1993),
Kleijnen (2008), and Kleijnen et al. (2008). We shall illustrate our methodology in
the next chapters, through some practical applications.

3.3 Remarks on the assumption of normally dis-
tributed simulation outputs

When we fit a regression metamodel, we do assume that the outputs are normally
distributed and this holds because the environmental variables e and the noise ε
are supposed to be normally distributed. In general, some classic assumptions are
often made in regression analysis, briefly recalled in the following: (i) white noise
metamodel’s residuals, (ii) simulation output having constant variance; (iii) full rank
for the matrix of explanatory variables X. Notice that, at this stage, no specific
parametric family of density functions is assumed for the output y.

When the classic assumptions hold, then the OLS is the Best Linear Unbiased
Estimator (BLUE) of the regression coefficients β. Mittelhammer (1996) discusses
the effects that a violation in each of the classical assumptions has on the properties
of the resulting estimator. More specifically, he proves that when the assumption
(i) is violated, then the OLS estimator β̂ is in general a biased estimator of β, so
the BLUE property is lost since β̂ is not even unbiased. More important, when the
assumption (ii) does not hold, then the OLS estimator β̂ is still unbiased for β. As
for the BLUE property, however, in the general (and usual) case where the matrix
Φ = E(εε′) is unknown, no linear estimator exists that satisfies the BLUE property.
Mittelhammer (1996) also observes that in the very special case where Φ is known,
then a BLUE estimator exists, and it is commonly referred to as Generalized Least
Squares (GLS) estimator.

Besides the classic assumptions discussed so far, it is sometimes convenient to
further assume that the outputs — and, hence, the residuals ε — follow a Normal
(Gaussian) distribution. In fact, this assumption provides additional properties to
the estimator of the regression coefficients β̂. First, we observe that, under the nor-
mality assumption, the classic assumptions necessarily imply that the residuals εi’s
are independent and identically distributed, with zero mean and variance σ2 (equal to
the variance of the Gaussian distribution). Then, the estimate β̂ is multivariate nor-
mally distributed, whereas it is just asymptotically normally distributed when only
the classic assumptions hold.

Due to the properties resulting from the normality assumption, it is important to
understand when and to what extent this assumption is realistic. Obviously, the as-
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sumption can be supported by some underlying theoretical or physical reasons related
to the particular problem under study. When this is not the case, the normal distri-
bution of the outputs is justified by virtue of the Central Limit Theorem (CLT): in
particular, it can be argued that the elements in the disturbance vector are themselves
defined as the summation of a large number of random variables, each eventually rep-
resenting neglected explanatory variables which — although affecting the output —
are not explicitly included in the regression model due to a lack of data or in order
to keep the problem still tractable. There can also be other conditions which make
the CLT applicable; they are discussed in Mittelhammer (1996, ch. 5,8).

Of course, there might be cases to which the CLT does not apply; for instance,
Kleijnen (2008) considers the estimated quantile w(d0.90c+0.5e) as a possible output,
and in general he does not expect normality for it — unless the simulation run c is
very long. On the other hand, referring to inventory problems, Mittelhammer (1996)
notices that some outputs of interest can be the costs averaged over the simulated
periods or the service percentage calculated as the fraction of demand delivered from
on-hand stock per period, so then the final output we are really interested in is
represented by the average computed over the planning horizon. He expects these
outputs to be normally distributed.

Based on what discuss so far, we can conclude that there can be arguments to
support the assumption of normality for the simulation outputs; however, it is prefer-
able to test for acceptability of the normality assumption, by performing appropriate
statistical tests.

The Kolmogorov-Smirnov test provides a general procedure for testing whether
a random sample is drawn from a specified population distribution (e.g. normal);
however, this test can be performed only when the hypothesized distribution function
is completely specified, i.e. all its parameters are supposed to be known.
An extension of the Kolmogorov-Smirnov test was proposed by Lilliefors, to test the
hypothesis of normality, without specifying the mean and the variance of the normal
distribution (see Conover, 1980). Given a random sample X1, . . . , Xn of size n, the
Lilliefors test consists of the following steps:

1. Estimate the mean µ and the variance σ2 of the normal distribution, through
the computation of the sample mean (3.3.1) and the sample variance (3.3.2):

X̄ =
1
n

n∑
i=1

Xi , (3.3.1)

s2 =
1

n− 1

n∑
i=1

(
Xi − X̄

)2
. (3.3.2)

2. Compute the ‘standardized’ sample values Zi as follows:

Zi =
Xi − X̄

s
i = 1, . . . , n . (3.3.3)
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3. Let F ?(x) denote the standard normal distribution function and S(x) the em-
pirical distribution function of the Zi’s. The Lilliefors test statistic is defined
by

T1 = supx|F ?(x)− S(x)| . (3.3.4)

4. Reject the null hypothesis H0 : Z ∼ N (µ, σ2) at the approximate level of
significance α if T1 exceeds its 1− α quantile.

In order to test whether the simulation outputs do follow a normal distribution, we
apply the Lilliefors test using the implementation provided by the MATLAB Statistics
Toolbox, through the function lillietest.



Chapter 4

Robust Optimization using
Kriging

The purpose of the present chapter is to discuss a novel approach to perform robust
simulation-optimization, still interpreting the simulated system under study according
to the Taguchian viewpoint, but — differently from what described in Chapter 3 —
we will use another metamodelling technique, namely Kriging. An overview of this
technique is given in Section 4.1. Then, the proposed approach is discussed in details
in Section 4.2.
The experiments and computational results of this methodology will be presented
in the next chapters, where it will be applied to the inventory models described in
Chapter 2.

4.1 Kriging Metamodelling

In this section we describe the characteristics of the Kriging metamodelling technique,
in more detail with respect to what was done for the RSM approach, since this meta-
modelling technique is expected not to be so well-known as the regression technique is.
We also refer to Sacks et al. (1989) and Santner et al. (2003) for a detailed exposition
of both theory and implementation of Kriging technique.

A Kriging model can be seen as a combination of a global model plus a localized
approximation, as reported in (4.1.1):

y(x) = f(x) + Z(x) , (4.1.1)

where f(x) is a known function of x as a global model of the original function, and
Z(x) is a stochastic process with zero mean and non-zero variance, representing a
local deviation from the global model. Usually, the regression model f(x) appearing

49
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in (4.1.1) can be written as

f(x) =
p∑
i=1

βi fi(x) , (4.1.2)

where fi : Rn → R, i = 1, . . . , p, are polynomial terms (typically of first or second
order) and, in many cases, they are reduced to constants. The coefficients βi, i =
1, . . . , p, are regression parameters.
The p+ 1 regression functions can be regarded as components of a vector

f(x) = [f0(x), . . . , fp(x)]T . (4.1.3)

Suppose the design sites are (x1, . . . ,xNs), where xi ∈ Rn, i = 1, . . . , Ns; then, we
can compute the matrix F by evaluating the vector f(x) at the design sites, thus
obtaining:

F =

 fT (x1)
...

fT (xNs
)

 =

 f0(x1), . . . , fp(xNs
)

...
...

f0(x1), . . . , fp(xNs
)

 . (4.1.4)

The covariance of Z(x) is expressed by (4.1.5):

Cov[Z(xj), Z(xk)] = σ2R(xj ,xk), j, k = 1, . . . , Ns , (4.1.5)

where σ2 is the so-called process variance and R is the correlation matrix, whose
elements are given by Rjk = Rθ(xj ,xk), representing the correlation function between
any two of the Ns samples xj and xk, with unknown parameters θ. R is a symmetric
matrix of dimension Ns ×Ns, with diagonal elements equal to 1.
The form of the correlation function Rθ(xj ,xk) can be chosen among a variety of
functions proposed in the literature, although the exponential family is used most
frequently; in this case the correlation function can be expressed in a parametric form
as in (4.1.6):

Rθ,p(xj ,xk) =
n∏
i=1

exp (−θi|xji − xki|pi) , (4.1.6)

where n is the dimension of the input variable. When pi = 2, then (4.1.6) is called
the Gaussian correlation function.

The Kriging predictor can be written as a linear combination of the observed
responses, i.e. in the following linear form

ŷ(x) = cT (x)ys , (4.1.7)

where ys is the vector of the response function evaluated at the Ns design sites,
ys = [y(x1), . . . , y(xNs

)]T . The weights c(x) are obtained by minimizing the Mean
Squared Error (MSE), which is given by

MSE[ŷ(x)] = E
[(
cT (x)ys − y(x)

)2]
. (4.1.8)
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In order to keep the predictor unbiased, the following constraint has to be satisfied:

FT c(x) = f(x) . (4.1.9)

Based on what discussed so far, it can be proven that the MSE in (4.1.8) can be
rewritten as

MSE[ŷ(x)] = σ2[1 + cT (x)Rc(x)− 2cT (x)r(x)] , (4.1.10)

where r(x) = [R(x1,x), . . . , R(xNs ,x)]T is the vector of the correlations between
Z(xi) and Z(x).
To minimize the MSE in (4.1.10) with respect to c(x) under the constraint (4.1.9),
we introduce the Lagrangian function, defined as

L(c(x), λ(x)) = σ2[1+cT (x)Rc(x)−2cT (x)r(x)]−λT (x)
(
FT c(x)− f(x)

)
. (4.1.11)

The gradient of 4.1.11 with respect to c is given by

L′(c(x), λ(x)) = 2σ2[Rc(x)− r(x)]− Fλ . (4.1.12)

The first order necessary conditions for optimality imply the following system of
equations: [

R −1/(2σ2)F
FT 0

] [
c(x)
λ(x)

]
=
[

r(x)
f(x)

]
. (4.1.13)

The solution of the system (4.1.13) is

λ(x) = 2σ2
(
FTR−1F )−1(f(x)− FTR−1r(x)

)
(4.1.14)

c(x) = R−1

(
r(x) +

1
2σ2

Fλ(x)
)

(4.1.15)

which yields the following equation for the Kriging predictor:

ŷ(x) = cT (x)ys =

= rTR−1ys + (f − FTR−1r)T (FTR−1R)−1FTR−1ys =

= rTR−1ys + (fT − rTR−1F )(FTR−1R)−1FTR−1ys =

= rTR−1(ys − Fβ̂) + fT β̂ , (4.1.16)

where
β̂ = (FTR−1F )−1FTR−1ys (4.1.17)

is the generalized least-squares (GLS) estimate of β in 4.1.2.
The construction of the Kriging model is based on an estimation of the unknown

correlation parameters θ. Assuming the stochastic process Z(x) to be Gaussian,
a likelihood function can be minimized using numerical optimization techniques to
determine an estimate θ̂ used to fit the model (Sacks et al., 1989). The likelihood
function depends on the coefficients β in the regression model, the process variance
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σ2 and the correlation parameters θ. Given the correlation parameters, the Maximum
Likelihood Estimation (MLE) of β is the GLS estimator given by (4.1.17), and the
MLE of σ2 is given by

σ̂2 =
1
Ns

(ys − Fβ̂)TR−1(ys − Fβ̂) . (4.1.18)

Therefore, the problem becomes the following:

min
θ

(det R)1/Ns σ̂2 ; (4.1.19)

this is a global optimization problem, which requires a heuristic procedure to be
solved.

In the proposed framework, Kriging models are constructed using algorithms and
functions of the MATLAB DACE Toolbox (see Lophaven et al., 2002). In order
to build a starting set of elements at the basis of the approximation model, several
data sampling methods have been suggested in the field of design of experiments.
The DACE toolbox offers a limited support to this preliminary activity, including
the rectangular grid – obtained considering all possible combinations of levels for the
factors involved in the experiments – and the (uniform) Latin Hypercube Sampling,
whose technique has already been discussed in Chapter 3; besides these, we implement
some other DoE techniques, to let the user choose the design expected to perform
better or being more promising for the problem to be analyzed. Moreover, the DACE
toolbox includes some heuristics to solve the problem in (4.1.19); in particular, for the
optimization process to start, a starting value θ = θ0 has to be specified; optionally,
a lower bound θlb and an upper bound θub on the values of its components can be
provided as well.

In the experiments we performed — whose results will be discussed in the following
chapters — we adopt the so-called ordinary Kriging, according to the implementation
provided by the DACE toolbox: this model — still based on Eq. 4.1.1 — selects p = 0
in Eq. 4.1.3, fixing also f0 ≡ 1; therefore the ordinary Kriging model can be rewritten
as follows:

y(x) = µ+ Z(x) . (4.1.20)

Notice that the DACE toolbox also provides the more general formulation given in
Eqs. 4.1.1-4.1.3.

4.2 Robust Optimization using Kriging

In this section we describe how to achieve robustness in simulation-optimization, using
Kriging metamodels. The basic scheme of the proposed approach resembles the one
described in Chapter 3, but it introduces some differences, which will be justified in
the following discussion.

We discuss the following two approaches based on Kriging:
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1. Inspired by Dellino et al. (2008a), we fit two Kriging metamodels, namely one
model for the mean and one for the standard deviation — both estimated from
the simulation’s I/O data.

2. Inspired by Lee and Park (2006), we fit a single Kriging metamodel to a rel-
atively small number (say) n of combinations of the control variables d and
the noise variables e. Next, we use this metamodel to compute the Kriging
predictions for the simulation output w for N � n combinations of d and e.

The general procedure is outlined in Fig. 4.1, making distinctions between the two
approaches we are going to discuss.

Robust Optimization combining Taguchi & Kriging

Input: design (D, nd × ne) in the control-by-noise space (d, e);
probability distribution of noise factors;

begin
for each design point (dj , ej) in D, j = 1, . . . , nd × ne

1a. Run the simulation model
1b. Compute wj = f(dj , ej)

switch sel approach
case Approach 1

2. Fit one Kriging metamodel for the mean of the response, ŷ, and one for its
standard deviation, σ̂y

3. Validate the metamodels, using leave-one-out cross validation
case Approach 2

2. Fit a Kriging metamodel for the main output function, y
3. Validate the metamodel, using leave-one-out cross validation
4. Generate a new design in the control-by-noise space
5. Fit one Kriging metamodel for the mean of the predicted response, ŷ, and one

for its standard deviation, ŝ(y)
6. Validate the metamodels, using leave-one-out cross validation

7. Estimate the Pareto frontier, solving constrained optimization problems
8. Apply distribution-free bootstrap on the output data B times
9. Derive confidence intervals for the Pareto frontier, using the bootstrapped data sets

end

Figure 4.1: Robust Optimization approaches through Kriging.

In the first approach, we select the input combinations for the simulation model
through a crossed (combined) design for the control and noise factors (as is usual in
Taguchian design); i.e., we combine the (say) nd combinations of the decision variables
with the ne combinations of the environmental variables. These nd combinations are
space-filling; the ne combinations are sampled from their input distribution; this
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sampling may use LHS. Simulating these nd × ne combinations gives the outputs wij
with i = 1, . . . , nd and j = 1, . . . , ne. These I/O data enable the computation of the
following unbiased estimators of the conditional means and variances:

wi =
1
ne

ne∑
j=1

wij (i = 1, . . . , nd) , (4.2.1)

s2i =
1

ne − 1

ne∑
j=1

(wij − wi)2 (i = 1, . . . , nd) . (4.2.2)

The latter estimator is not unbiased, because E(
√
s2) = E(s) 6=

√
E(s2) =

√
σ2 = σ;

however, we ignore this bias.
Note that — although statisticians had criticized it in the Taguchian approach — we
do use crossed design, because we need to estimate the mean and the variance of the
output function and in order to do this we need multiple observations for the same
combination of decision factors.

In the second approach, we select a (relatively small) number of input combinations
for the simulation model through a space-filling design for the nd + ne input factors.
This implies that, at this stage, we do not distinguish between control and noise
factors yet; moreover, the noise factors are not yet sampled from their distribution.
It is worth noticing that the space-filling design avoids extrapolation in the next
step, i.e. when using the Kriging metamodel to obtain predictions. For the larger
design we select a space-filling design for the control factors, but a LHS design for
the noise factors accounting for their distribution. For this large I/O set we compute
the Kriging predictors for the conditional means and standard deviations; i.e., in the
right-hand sides of (4.2.1) and (4.2.2) we replace ne and nd by Ne and Nd, (the large-
sample analogues of the small-sample ne and nd) and w by ŵ where the ‘hat’ denotes
Kriging prediction.

Validation of the Kriging metamodels is performed through cross-validation, sim-
ilarly to what discussed in Chapter 3. Notice that — to avoid extrapolation — we
apply cross-validation to a restricted set of input combinations di, namely excluding
those input combinations for which at least one of the input factors (d1, ..., dnd

) con-
tains an extreme value (i.e., the highest or lowest value for that input factor, across the
n points already simulated). We refer to the remaining points as the cross-validation
set, whose cardinality we denote by ncv.
A remark should be added, when the underlying simulation model is stochastic, imply-
ing that replications are required. As pointed out in Chapter 3, replicated simulation
outputs make it possible to compute the Studentized prediction error for each of the
input combinations that have been left out during the cross validation procedure.
However, an additional step is required, because we need to estimate the variance of
the Kriging prediction at the left-out input combination di. den Hertog et al. (2006)
proved that the estimator of the Kriging predictor commonly used in the literature
is biased; therefore, they propose an unbiased estimator, based on distribution-free
bootstrapping.
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First, we give a general description of this method; then, we will discuss the es-
timator for Kriging variance based on bootstrap. Suppose we have n independent
observations x1, . . . , xn, for convenience denoted by the vector x = (x1, . . . , xn), from
which we compute a statistic of interest s(x). A bootstrap sample x∗ = (x∗1, . . . , x

∗
n)

(the superscript ∗ is the usual symbol for bootstrapped values) is obtained by ran-
domly sampling n times, with replacement, from the original population of data points
(x1, . . . , xn). The bootstrap data set (x∗1, . . . , x

∗
n) consists of members of the original

data set (x1, . . . , xn), some appearing zero times, some appearing once, some appear-
ing twice, etc. This is repeated (say) B times; B is called the bootstrap sample size.
Which value should be chosen for B is still a matter for debate. Efron and Tibshirani
(1993) discusses the topic and suggests some rules of thumb, pointing out that very
seldom more than B = 200 bootstrap samples are needed. Corresponding to each
bootstrap sample is a bootstrap replication of s, namely s(x∗b), which is the result of
applying the same function s(·) to x∗b as was applied to x.
The implementation of the bootstrap algorithm is straightforward: we randomly select
integers i1, i2, . . . , in, each of which equals any value between 1 and n with probability
1/n. The bootstrap sample consists of the corresponding elements in x,

x∗1 = xi1 , x
∗
2 = xi2 , . . . , x

∗
n = xin .

The bootstrap algorithm works by drawing B independent bootstrap samples, each
time evaluating the corresponding bootstrap replications.

The method proposed by den Hertog et al. (2006) to compute an unbiased esti-
mator for Kriging variance consists in the following steps:

1. Sample (with replacement) m numbers from the uniform distribution with con-
stant probability 1/m for the m integers {1, 2, ...,m}). This yields a set of m
replicate numbers i1, i2, . . . , im.

2. For each input combination dz in the cross-validation set, include the outputs
wi1(dz) to wim(dz) in the bootstrapped data set.

3. Compute the bootstrap output w∗(dz) averaged over replications, for all com-
binations dz in the cross-validation set:

w∗(dz) =
1
m

m∑
r=1

wir (dz) . (4.2.3)

4. Calculate the bootstrapped estimated optimal Kriging weights λ∗ and the cor-
responding bootstrapped Kriging predictor y∗(di) using the n−1 bootstrapped
averages w∗(dz).

To decrease the sampling effects of bootstrapping, we repeat the whole procedure B
times (in our experiments, we select B = 200), yielding estimated optimal Kriging
weights λ∗b and bootstrapped Kriging predictors y∗b (di) with b = 1, . . . , B. These
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B values enable estimation of the variance of the Kriging predictor, analogously to
3.2.24:

̂var(y∗(di)) =
1

B − 1

B∑
b=1

(
y∗b (di)− y∗(di)

)2

, (4.2.4)

where

y∗(di) =
1
B

B∑
b=1

y∗b (di) . (4.2.5)

Then we compute the Studentized prediction error as follows:

t
(i)
m−1 =

w(di)− ŷ−i(di)√
̂var(w(di)) + ̂var(y∗(di))

, (4.2.6)

where w(di) is given by (3.2.21), ŷ−i is the Kriging prediction at the point left-out,
di, and

̂var(w(di)) =
̂var(w(di))
m

(4.2.7)

̂var(w(di)) =
1

m− 1

m∑
r=1

(
wr(di)− w(di)

)
. (4.2.8)

Accordingly to what discussed in Section 3.2, we reject the metamodel if

max
i

t
(i)
m−1 > tm−1;1−α/(2ncv) . (4.2.9)

Both approaches use the Kriging metamodels for the estimated mean and standard
deviation to find the robust optimum that minimizes the mean while satisfying a
constraint on the standard deviation. Varying the value of the right-hand side for
that constraint gives an estimation of the Pareto frontier.

Our goal is then to analyze the variability of this Pareto frontier. Whereas
Dellino et al. (2008a) apply parametric bootstrapping, we apply nonparametric or
distribution-free bootstrapping, which results in a less restrictive approach, since it
does not require any particular assumption on the underlying distribution for the
data to be bootstrapped.
Notice that bootstrapping assumes that the ‘original’ observations wij are Identically
and Independently Distributed (IID); see Efron and Tibshirani (1993). LHS, however,
implies that in each of the ne intervals only a single combination of the environmen-
tal inputs is sampled. After some experiments to compare results based on crude
sampling versus LHS, we decided to ignore this dependence in our bootstrap.

In order to apply nonparametric bootstrap to the output data wij we should pay
attention to select the values of the output function — for each combination of the
decision factors — according to the same vector of indices; if not, we will introduce
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too much variability in the bootstrapped data, since we are mixing the influence
of different environments on the output of each input combination. Therefore, we
resample — with replacement — the ne original simulation outputs w:j , which gives
the ne bootstrapped observations w∗:j ; note that this operation is performed column-
wise, i.e. for all i at a time, instead of repeating it for each i (i = 1, . . . , nd). Analogous
to (4.2.1) and (4.2.2) we compute the nd bootstrapped averages and variances:

wi
∗ =

1
ne

ne∑
j=1

w∗ij (i = 1, . . . , nd) , (4.2.10)

s2∗i =
1

ne − 1

ne∑
j=1

(
w∗ij − wi∗

)2 (i = 1, . . . , nd ) . (4.2.11)

To reduce the sampling error in this resampling, we repeat this sampling B times;
this sample size gives the bootstrapped averages and variances wi;b∗ and s2∗i;b (b =
1, . . . , B); see (4.2.10) and (4.2.11). To these bootstrapped output data we apply
Kriging.

In order to estimate the variability of the original (i.e., non-bootstrapped) Pareto
frontier through the bootstrapped Kriging metamodels, we proceed as follows:

• Each point of the Pareto frontier (ŷopt, ŝ(y)opt) is obtained by an optimal vector
of decision variables dopt.

• Due to the uncertainty introduced by the environmental factors — which we
account for through the bootstrap sampling — it might happen that the optimal
combination for the decision variables does not generate the expected optimal
output values.

• To have an idea of the variability in the output, we predict the mean and stan-
dard deviation of the output at the optimal input dopt, based on the boostrapped
Kriging metamodels.

• This computation can be applied to all the points on the Pareto frontier.
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Chapter 5

The Economic Order
Quantity Model

The Economic Order Quantity (EOQ) model is the first example we use to illustrate
and test our methodology. Although its simplicity — and maybe even thanks to that
— it helps in describing each step of the heuristic procedure, and the computational
results are easy to understand (because there are no complicated dependence between
the factors involved). The main characteristics of the model and the numerical ex-
ample we will consider have been already discussed in Chapter 2, so we will present
directly the results of our experiments.

The chapter is structured as follows: Section 5.1 describes some preliminary exper-
iments, aiming at studying the sensitivity of the classic EOQ model to small variations
in the parameters. Then, Section 5.2 presents the results of the classic optimization
on the EOQ model, using regression metamodels: at this stage, no uncertainty on
the parameters is assumed yet. Afterwards, Section 5.3 discusses the results of the
robust optimization of the EOQ model based on RSM, when demand rate is affected
by uncertainty: more specifically, we apply the procedures described in Chapter 3.
Finally, Sections 5.4 and 5.5 detail the experiments performed on the EOQ model ac-
cording to the methods described in Chapter 4, starting from the classic optimization
and then moving to the robust formulation.

5.1 Sensitivity Analysis

Before dealing with the core problem of this work, i.e. robust optimization w.r.t.
to parameters uncertainty, it might be interesting to perform some preliminary ex-
periments, with the purpose of studying how possible deviations in the parameters
from their nominal values (i.e., those values chosen assuming no uncertainty) let the
optimal order quantity move from the nominal optimum, i.e. the optimal solution
corresponding to nominal parameters values. Besides that, we conduct an empirical
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study by means of a numerical example, to verify what stated analytically.
Starting from the EOQ formula in Eq. 2.1.5, we consider the influence of varying

the unit holding cost h, computing the partial derivative of Q∗ w.r.t. h:

∆Qo
∆h

' ∂Qo
∂h

=
∂

∂h

[√
2aK
h

]
=
√

2aK
∂

∂h

(
1√
h

)
= − 1

2h

√
2aK
h
⇒

⇒∆Qo
∆h

' − 1
2h

Qo ⇒ ∆Qo ' −
1

2h
Qo ∆h (5.1.1)

where Qo denotes the optimal order quantity value achieved at the nominal holding
cost h.
Considering the example introduced in Chapter 2, Fig. 5.1 shows the curve of the
total cost w.r.t. the batch size; it also depicts the curves described by y = aK/Q
and y = 1

2hQ: they represent the two cost components (in particular, the ordering
costs and the inventory carrying costs) depending on the order quantity Q, which
determine the asymptotic behaviour of the curve C(Q).
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Q* = 25298
↓

Figure 5.1: Total cost C versus order quantity Q.

Eq. 5.1.1 implies that a positive variation of the unit holding cost causes a decreas-
ing in the optimal order quantity; viceversa, if we diminish the holding cost coefficient,
the optimal solution moves to the right, increasing its value. This is evident from Fig.
5.2, which shows how the total cost curve changes due to a variation of the unit hold-
ing cost, in the range [−1%,+1%] w.r.t. a nominal value h. Analyzing the results
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obtained, it can be noted that a variation of ∆h = ±1% implies a variation of the
optimal order quantity ∆Qo ' ∓0.5%.

1.5 2 2.5 3 3.5 4 4.5

x 104

8.75

8.8

8.85

8.9
x 104

Q

C
T

Total cost w.r.t. small variations in the holding cost, h

Figure 5.2: Total cost C versus order quantity Q, when varying the holding cost h.

Comparing Fig. 5.2 with Fig. 5.1, it can be noticed that the way the curvature
changes is due to the increasing slope of the line describing the inventory carrying
costs.

The sensitivity of the optimal order quantity w.r.t. fluctuations in the demand
rate can be studied in a similar way; so, computing the partial derivative of Qo w.r.t.
a, we obtain:

∆Qo
∆a

' ∂Qo
∂a

=
∂

∂a

[√
2aK
h

]
=

√
2K
h

∂

∂a

(√
a
)

=

√
K

2ah
⇒

⇒∆Qo
∆h

' 1
2a

Qo ⇒ ∆Qo ' −
1
2a

Qo ∆a (5.1.2)

As it is clear from Eq. 5.1.2, a slight positive increase in the demand rate causes
the optimal order quantity to increase as well; viceversa, if the demand rate decreases,
the optimal solution moves to the left, decreasing its value. The behaviour described
so far is depicted in Fig. 5.3, where the demand rate varies in the range [−1%,+1%]
w.r.t. a nominal value a. In this case, a variation in the demand rate ∆a = ±1%
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Figure 5.3: Total cost C versus order quantity Q, when varying the demand rate a.

causes the minimum cost solution to move from the nominal value of a quantity
∆Qo ' ±0.5%.

Comparing Fig. 5.3 with Fig. 5.1, it can be noticed that the way the curvature
changes is due to the increasing distance from the origin of the vertex of the hyperbola
describing the ordering costs, which asymptotically delimits the total cost curve.

It is also likely that both the demand rate and the holding cost vary at the same
time; in that case, in order to examine the way the total cost curve changes due to
contemporary variations of the two parameters, we should combine the results that
have been described before, when one single parameter varied at a time. The resulting
behaviour is shown in Fig. 5.4. Moving from what observed before, it is noticeable
that a variation of both the parameters in the same direction (i.e. ∆h = ∆a = ±1%)
implies no changes in the value of the optimal order quantity: this is due to the fact
that the two parameters produce equal though opposite effects on the position of the
optimal solution, thus cancelling each other.

Comparing Fig. 5.4 with the previous Figs. 5.2-5.3, it is clear that the latter are
easily obtainable from the former, by fixing only one of the two parameters.

Finally, to complete the sensitivity analysis on the basic EOQ model w.r.t. its
parameters, it should be mentioned what happens when the unit cost c or the setup
cost K are allowed to vary. When c moves from its nominal value, the optimal order
quantity Qo keeps its nominal value, since there is no dependence on this parameter;
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Figure 5.4: Total cost C versus order quantity Q, when varying both the demand rate
a and the holding cost h.

however, the optimal total cost Co changes its value, according to Eq. 2.1.6. The
effect of varying c in the range [−1%,+1%] w.r.t. its nominal value is shown in Fig.
5.5; notice that the curve of the total cost keeps the same curvature and it just shifts
along the ordinate axis.

Variations in the setup cost K have almost the same impact as those affecting the
demand rate a, since the functional dependence of Qo on each of these parameters is
similar. Fig. 5.6 shows how the shape of the curve of the total cost changes when the
setup cost varies in the range [−1%,+1%] w.r.t. its nominal value; even though the
curves are quite different from those depicted in Fig. 5.3, we can observe that — in
both cases — an increasing (respectively, decreasing) in the value of the parameter
allowed to vary determines an increasing (respectively, decreasing) in the value of the
optimal order quantity.

5.2 Simulation Optimization of the classic EOQ us-
ing RSM

In this section we apply the heuristic procedure described in Chapter 3 to the simu-
lation optimization of the classic EOQ inventory model, still referring to the example
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Figure 5.5: Total cost C versus order quantity Q, when varying the ordering cost c.

described in Section 2.1.4.
As it has been already pointed out, the EOQ simulation is deterministic. Because

all cycles are identical, we simulate a single cycle only. We start this cycle with
an inventory level of Q units. Based on Eqs. 2.1.5-2.1.6 the true optimal input is
Qo = 25298 and the corresponding output is Co = 87589; of course, this optimum
remains unknown to our procedure, and we use it only to guide our design of the
simulation experiment and to verify its results.

The steps of our simulation experiment have been described in Section 3.1.1, where
we also pointed out that our experiments refer to a simplified RSM; having Fig. 3.1
in mind, we detail the algorithm setting in the following.

1. Design: We assume that in practice the analysts have some knowledge about the
location of the relevant experimental area. To select the experimental area, we
therefore start with the interval [0.5Qo, 1.5Qo]. This selection, however, would
imply that the midpoint coincides with the true optimum input (Qo = 25298)
— which rarely occurs in practice. We therefore shift the interval a little bit
(namely, by less than 5000 units) to the right so that it is centered at the
‘round’ value Q = 30000. Furthermore, we pick five equally spaced points
(a Central Composite Design or CCD would also have five points, albeit not
equally spaced; see Myers and Montgomery (2002) and Table 5.10), including
the extreme points, 0.5× 30000 = 15000 and 1.5× 30000 = 45000; see row 1 of
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Figure 5.6: Total cost C versus order quantity Q, when varying the setup cost K.

Table 5.1: I/O data of EOQ simulation
Q 15000 22500 30000 37500 45000
C 88650 87641.66 87700 88185 88883.34

Table 5.1 below. The input parameters are fixed to their nominal values.

2. Simulation Model : We program the simulation model in Arena (Kelton et al.,
2007). Next we run this simulation, and obtain C(Qi) = Ci, which denotes the
cost corresponding with input value i (i = 1, . . . , 5) selected in step 1; see the
Input/Output (I/O) combinations (Qi, Ci) displayed in Table 5.1.

3. Regression Metamodel : Based on the I/O data from steps 1-2, we estimate a
second-order polynomial regression metamodel, using Ordinary Least Squares
(OLS). We could use either the original or the coded factor values; see (3.2.10).
However, we focus on the estimated effects of the coded decision variable, be-
cause these effects (say) β̂ show their relative importance; moreover, their nu-
merical accuracy is better: the condition number for X is 3.08, whereas it is
1.07 · 1010 when using the original Q. This β̂ is displayed in the row with i = 0
(zero I/O data eliminated) in Table 5.2. (We also compute the estimated effects
of the original variable; e.g., the estimated quadratic effect is then of order 10−6,
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so it seems unimportant; however, this coefficient is multiplied by Q2, which is
of order 108, so their joint effect is of order 102.)
Fig. 5.7 shows the regression metamodel for the EOQ, comparing it with the
analytical I/O function. The optimal solution for each of the two curves is also
plotted.
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Figure 5.7: EOQ regression metamodel.

4. Metamodel cross-validation: The remaining rows of Table 5.2 display the re-
estimated regression parameters following from (3.2.19), and the re-estimated
regression prediction following from (3.2.20). This table also presents the rela-
tive prediction errors ŷ(−i)/Ci, which supplement the scatterplot in Figure 5.8.
Notice that this is not the only way to evaluate the metamodel accuracy: some-
times, it could be preferable to evaluate the residuals, ei = yi− ŷi, i = 1, . . . , n,
eventually working with scaled residuals, which often convey more information
than the ordinary residuals do (see Myers and Montgomery, 2002). The esti-
mated regression coefficients in different rows remain more or less the same.
Anyhow, we decide to accept the regression metamodel because we think it is
an approximation that is adequate enough for our goal, which is the illustration
of robust optimization through the EOQ model (for the roles of different goals
in simulation see Kleijnen and Sargent (2000)).

Note: Table 5.2 implies that the estimated main effect is not significantly dif-
ferent from zero, whereas the quadratic effect is; see the t statistic in (3.2.30).
As we discussed before, we do not replace the estimated main effect by zero.
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Table 5.2: Cross-validation of EOQ regression metamodel
i β̂0(−i) β̂1(−i) β̂1;1(−i) ŷ(−i) ŷ(−i)/Ci
0 87663.4257 202.004 1097.15
1 87731.998 522.008 640 87849.94 0.991
2 87769.82 139.94 1008.49 87952.11 1.004
3 87628.88 202.004 1137.79 87628.92 0.999
4 87583.63 155.46 1163.64 87951.95 0.997
5 87603.997 479.34 1493.34 89576.98 1.008

Table 5.3: I/O data for EOQ simulation with smaller Q-range
Q 22500 26250 30000 33750 37500
C 87641.66 87594.64 87700 87906.95 88185

We point out that the estimated effects are not independent, because (X′X)−1

in (3.2.29) is not diagonal.

The estimated optimum (say) Q̂o follows from the first-order optimality condition
∂Ĉ/∂Q = β̂1 + 2β̂1;1x1 = 0, where x1 is the coded variable corresponding with Q,
which gives Q̂o = 28636. This Q̂o gives the estimated minimal cost Ĉo = 87654.
In this example, we know the true optimum so we can easily verify the estimated
optimum: Q̂o/Qo = 28636/25298 = 1.13 and Ĉo/Co = 87654/87589 = 1.001 so
the cost virtually equals the true minimum, even though the input is 13% off. This
illustrates the well-known insensitivity property of the EOQ formula.

We also experiment with a smaller experimental area; i.e., a smaller Q-range. We
assume that the center of this new area is still close to the true optimum and we pick
the same number of points in the interval

[
0.75 Q̄, 1.25 Q̄

]
, still coding them into the

interval [−1,+1]. The Taylor series argument suggests that this smaller area gives a
better approximation locally. Row 1 of Table 5.3 shows the Q values in the smaller
experimental area; row 2 gives the corresponding simulation outputs.

Regression analysis of the I/O data in Table 5.3 gives Table 5.4 and the scatterplot
of Figure 5.9. Comparison with Table 5.2 and Figure 5.8 shows that the smaller Q-
range gives a more accurate metamodel. The resulting estimated optimum Q̂o is
25115, which gives Ĉo = 87607 so Q̂o/Qo = 25115/25298 = 0.99 and Ĉo/Co =
87618/87589 = 1.0003, meaning that the optimal order quantity is only 1% below the
true EOQ and the corresponding cost virtually equals the true cost. Comparison with
the old results (Q̂o/Qo = 1.13 and Ĉo/Co = 1.001) shows that the smaller Q-range
improves the estimated optimum, indeed.
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Figure 5.8: Scatterplot of the EOQ regression metamodel

5.3 Robust optimization of EOQ model using Taguchi
and RSM

In this section, we focus on the robust formulation of the EOQ model, introduced in
Section 2.1.3. Restricting our attention to possible variations on the demand rate —
supposed to be normally distributed, we experiment with a ‘low’ and ‘high’ uncer-
tainty: σa = 0.10µa and σa = 0.50µa. Because these standard deviations can give a
negative value for a — although with a small probability —, we adjust the normal
distribution in (2.1.15) slightly by cutting the negative tail off, according to what
discussed in Section 3.2. However, we ignore this adjustment in our further analysis.

Following Myers and Montgomery (2002), we select ‘a few’ values (levels) for the
environmental factors. Those authors use only two values per environmental factor
(which suffices to estimate its main effect and its interactions with the decision fac-
tors). We, however, use Latin Hypercube Sampling (LHS) to select ‘a few’ values for
the environmental factors (because LHS is popular in risk and uncertainty analysis;
see Kleijnen (2008)). We follow the procedure described in Section 3.2, taking into
account that demand values cannot be negative. So, LHS splits the range of possible
a values (0 < a < ∞) into ne = 5 equally likely subranges, namely (0, µa − 0.85σa ],
(µa − 0.85σa, µa − 0.73σa ] , (µa − 0.73σa, µa + 0.73σa ], (µa + 0.73
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Table 5.4: Cross-validation of EOQ regression metamodel with smaller range
i β̂0(−i) β̂1(−i) β̂1;1(−i) ŷ(−i) ŷ(−i)/Ci
0 87698.26 279.798 214.78
1 87704.57 309.26 172.69 87633.242 0.999
2 87707.76 274.26 206.86 87612.056 1.000
3 87696.62 279.798 216.71 87698.26 0.9999
4 87690.03 274.99 221.64 87891.854 0.9997
5 87692.38 307.23 253.97 88192.838 1.001

Table 5.5: I/O simulation data for EOQ model with uncertain demand rate
a

4530,34 5478,85 7687,37 9329,26 11559,02

Q

15000 51177,72 61421,54 85273,65 103006 127087,4
22500 51094,63 61085,52 84348,68 101643,2 125130
30000 51615,59 61480 84448,7 101524,3 124713,8
37500 52378,16 62166,7 84958,71 101902,9 124914,1
45000 53261,54 62999,49 85673,71 102530,4 125422,6

σa, µa + 0.85σa], (µa + 0.85σa,∞). Notice that the ‘base’ value µa has zero probabil-
ity, but a value ‘close’ (namely less than 0.73σa away) has 20% probability. This gives
the a values in Table 5.5, which uses the relatively high uncertainty σa = 0.50µa. It
might be reasonable to add an upper bound to a, since in practice the demand will
not go beyond a given value: if no other information is available, we can fix the upper
bound at (say) µa + 3σa.

For the decision variable Q we select the five values that we also used in Table
5.1. We cross the two designs for a and Q respectively, as is usual in a Taguchian
approach. However, we could also have used LHS to get a combined design for a
and Q. We also use a CCD instead of LHS (see Table 5.10); Myers and Montgomery
(2002) also discuss designs more efficient than crossed designs.

We run the EOQ simulation model for all 5×5 combinations of the inputs (decision
and environmental inputs), which gives Table 5.5.

We again code the inputs; see (3.2.10). So x1 corresponds with Q and x2 with a;
e.g., a = 7687, 37 corresponds with x2 = −0.1017 (not exactly zero, because of the
sampling that LHS does). Furthermore, if σa = 0.50µa = 4000 and b2 = 2.85× 10−4,
then the standard deviation of x2 is σ2 = 4000× 2.85× 10−4 = 1.14.

To analyze these I/O data, we might compute the estimated conditional variance
̂var(C|Qi) from the row with Qi (i = 1, . . . , 5) in Table 5.5; also see Lee and Nelder

(2003). Instead we follow Myers and Montgomery (2002) and estimate the variance
using all the elements in this table; also see (3.2.16). The latter approach gives a
better estimator, provided that the RSM metamodel (3.2.8) is correct.

To compute the OLS estimates, we must re-arrange the 5 × 5 elements of Table
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Figure 5.9: Scatterplot of the EOQ regression metamodel for smaller Q-range

5.5 into the n× q X-matrix of (3.1.3) where now n = 25 and q = 5; w now becomes a
vector with the 25 simulation outputs C. This gives the estimated intercept β̂0, the
estimated first-order effect β̂1 and second-order effect β̂1;1 of Q, the estimated first-
order effect γ̂1 of a, and the interaction δ̂1;1, which are displayed in the row denoted
by 0 (zero rows eliminated) in Table 5.6. The rest of this table displays the cross-
validation results (analogous to Table 5.2). This table gives the scatterplot in Figure
5.10. This table and this figure suggest that this metamodel is adequate for robust
optimization through RSM. Comparing Figures 5.8 and 5.10 suggests that the first
figure is much worse; however, using the same scale in both figures (not displayed)
changes that impression.

Note: To check the negative sign of δ̂1;1 (interaction between Q and a), we use the
analytical solution (2.1.4) to derive ∂2C/∂Q∂a = −K/Q2, which is indeed negative.

Apart from cross validation, we also test the relative importance of the individual
regression coefficients, in order to check whether the structure of the regression model
can be reduced or not. Table 5.7 shows the results obtained for the regression model
built over Q ∈ (0.5Q̄, 1.5Q̄) and σa = 0.5a; we fix α = 0.05, which provides a
confidence level of 95%, so the threshold below which the null hypothesis is accepted
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Table 5.6: Cross-validation of regression metamodel for RO of EOQ
i β̂0(−i) β̂1(−i) β̂1;1(−i) γ̂1(−i) δ̂1;1(−i) ŷ(−i) ŷ(−i)/Ci
0 88150.40 190.56 1058.33 36774.03 -899.67
1 88144.21 172.94 1088.31 36755.96 -863.54 51440.09 1.005
2 88147.70 181.73 1072.54 36768.01 -887.64 61545.93 1.002
3 88152.19 198.89 1046.41 36774.09 -899.80 85169.34 0.999
4 88154.29 214.81 1026.29 36764.26 -880.14 102725.72 0.997
5 88157.15 259.16 976.22 36714.38 -780.37 126368.95 0.994
6 88150.48 190.51 1058.24 36773.93 -899.57 51096.08 1.000
7 88154.53 188.27 1054.63 36770.90 -896.54 61150.15 1.001
8 88164.19 182.52 1046.82 36773.90 -899.54 84550.05 1.002
9 88172.91 177.00 1040.41 36784.95 -910.59 101956.72 1.003
10 88190.37 165.55 1028.40 36817.51 -943.16 125653.78 1.004
11 88124.57 190.56 1090.86 36793.63 -899.67 51330.94 0.994
12 88131.43 190.56 1081.72 36783.93 -899.67 61275.30 0.997
13 88146.40 190.56 1063.03 36774.05 -899.67 84407.52 1.000
14 88158.08 190.56 1049.58 36776.69 -899.67 101600.85 1.001
15 88177.60 190.56 1028.69 36795.56 -899.67 124973.16 1.002
16 88136.05 182.81 1071.52 36789.93 -883.77 52147.29 0.996
17 88137.51 183.42 1069.82 36783.76 -889.94 61965.54 0.997
18 88139.92 184.45 1067.07 36774.13 -899.57 84805.76 0.998
19 88141.21 185.03 1065.63 36769.57 -904.12 101775.07 0.999
20 88142.70 185.75 1064.09 36765.65 -908.04 124813.22 0.999
21 88140.63 218.39 1105.69 36745.49 -956.75 53675.97 1.008
22 88144.24 210.75 1090.83 36760.27 -927.18 63283.89 1.005
23 88148.76 198.15 1069.18 36773.97 -899.79 85768.71 1.001
24 88150.72 188.53 1055.65 36773.21 -901.30 102506.95 1.000
25 88152.94 164.73 1027.41 36751.56 -944.60 125152.04 0.998
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Figure 5.10: Scatterplot of the EOQ regression metamodel for RO

is t1−α/2,n−q = 2.086.

Table 5.7: t-statistics applied to RSM with Q ∈ (0.5Q̄, 1.5Q̄) and σa = 0.5µa
RSM coeff. t0(βj) CI

β̂0 13111.04 [88010.14, 88290.65]
β̂1 3.11 [62.67, 318.45]
β̂1;1 10.29 [843.91, 1272.74]
γ̂1 620.67 [36650.44, 36897.62]
δ̂1;1 −10.74 [−1074.45,−724.89]

Table 5.9 and Fig. 5.11 show the cross validation results for the experiment with
smaller uncertainty σa = 0.10µa, whose I/O data are represented in Table 5.8.

Using a RSM metamodel like the one in the first row of Table 5.6, Myers and
Montgomery (2002) derive contour plots for the mean and variance. Because our
EOQ example has a single decision variable, we do not superimpose contour plots but
present the following two plots:

• Figure 5.12 shows the plot for Q (the decision variable) versus Ĉ (mean output,
estimated through regression analysis); see (3.2.15) with the regression param-
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Table 5.8: I/O simulation data for EOQ model with uncertain demand rate
a

6076.55 7438.96 7.832.04 8595.36 9101.10

Q

15000 67876.77 82590.79 86836.02 95079.90 111541.90
22500 67381.35 81732.06 85872.48 93912.80 99239.95
30000 67696.14 81865.20 85953.20 93891.76 99151.47
37500 68335.02 82395.09 86451.64 94329.13 99548.38
45000 69135.94 83123.34 87158.94 94995.71 100188

Table 5.9: Cross-validation of regression metamodel for RO of EOQ with smaller
a-range

i β̂0(−i) β̂1(−i) β̂1;1(−i) γ̂1(−i) δ̂1;1(−i) ŷ(−i) ŷ(−i)/Ci
0 83374.03 307.26 1070.93 15824.45 -387.14
1 83373.72 296.40 1082.41 15814.75 -367.74 67977.23 1.001
2 83375.07 313.61 1062.48 15825.97 -390.18 82516.93 0.999
3 83375.95 316.08 1058.27 15824.30 -386.85 86725.30 0.999
4 83378.77 320.83 1047.87 15815.61 -369.45 94878.21 0.998
5 83382.36 325.08 1036.43 15802.71 -343.66 100240.08 0.997
6 83383.68 300.95 1064.25 15813.17 -375.86 67498.17 1.002
7 83387.18 299.36 1060.43 15820.66 -383.35 81915.79 1.002
8 83388.19 299.02 1059.09 15824.72 -387.41 86079.62 1.002
9 83390.53 298.34 1055.76 15836.08 -398.77 94178.12 1.003
10 83392.58 297.83 1052.67 15847.45 -410.14 99559.36 1.003
11 83353.46 307.26 1092.07 15842.31 -387.14 67511.15 0.997
12 83367.41 307.26 1078.48 15825.81 -387.14 81799.08 0.999
13 83370.36 307.26 1075.25 15824.40 -387.14 85915.31 1.000
14 83375.54 307.26 1069.02 15825.18 -387.14 93908.39 1.000
15 83378.87 307.26 1064.54 15828.47 -387.14 99207.34 1.001
16 83355.49 295.13 1083.75 15846.11 -365.47 68110.62 0.997
17 83362.44 300.30 1080.18 15827.79 -383.80 82233.12 0.998
18 83363.51 301.14 1079.72 15824.25 -387.34 86297.79 0.998
19 83364.95 302.35 1079.27 15818.05 -393.54 94183.08 0.998
20 83365.52 302.94 1079.30 15813.89 -397.69 99401.86 0.999
21 83372.90 346.65 1112.57 15789.26 -457.51 69500.37 1.005
22 83372.29 317.81 1084.94 15821.92 -392.19 83245.96 1.001
23 83372.43 314.61 1081.48 15824.57 -386.90 87251.28 1.001
24 83373.06 310.04 1075.65 15826.26 -383.51 95037.07 1.000
25 83373.96 307.40 1071.20 15824.62 -386.79 100190.39 1.000



76 Chapter 5

6.5 7 7.5 8 8.5 9 9.5 10 10.5

x 104

6.5

7

7.5

8

8.5

9

9.5

10

10.5
x 104

C(i)

y(
-i)

  iC

)( iy −

Figure 5.11: Scatterplot of the EOQ regression metamodel for smaller a-range

eters β0, β, B, γ, and ∆ replaced by their estimates. Indeed, E(a) in (3.2.15)
is a known input value: it is not exactly equal to µa in (2.1.15) because we
resample negative a values, which have a probability of nearly 2% for high σa
and virtually zero for small σa; we could also have estimated E(a) through

a =
5∑
1
ai/5 where ai is shown in Table 5.5.

• Figure 5.13 shows Q versus σ̂C , the estimated standard deviation of C pre-
dicted through the RSM metamodel. We prefer the standard deviation over
the variance because the former uses the same scale as the simulated cost
C and its regression estimate Ĉ. We use (3.2.16) with γ, ∆, and σ2

ε re-
placed by their estimates, including the MSR estimator (3.2.18) of σ2

ε . Notice
that σ2

a is a known input value, so we also know the variance of the corre-
sponding coded variable x2, namely σ2

2 = 1.142 = 1.3. Altogether we obtain
σ̂C = [(γ̂1+ δ̂1;1x1)2σ2

2 +σ̂2
ε ]1/2 = [(36755.96−863.54x1)2×1.3+4.6224×104]1/2.

Figure 5.13 shows this second-order polynomial, which actually resembles a lin-
early decreasing function in the relatively small domain of Q that is pictured;
also see the next Note.
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Note: For this simple example we know the true I/O function of the simulation
model, namely (2.1.4). So the true standard error of the cost C is

σC = σ

(
aK

Q
+ ac+

hQ

2

)
= σ

(
hQ

2
+ [

K

Q
+ c]a

)
=
(
K

Q
+ c

)
σa = cσa +

Kσa
Q

.

(5.3.1)
It could have been computed analytically as well, using Eq. 5.3.2

σ2[C(Q, a)|Q] = E[C2(Q, a)|Q]− E2[C(Q, a)|Q]. (5.3.2)

Since Q is not a random variable, we can express the conditional expectation of
C(Q, a) given Q as

E[C|Q] =
∫ +∞

0

C(Q, a)p(a)da , (5.3.3)

where

p(a) =
1

σa
√

2π
e−(a−µa)2/(2σ2

a) . (5.3.4)
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Combining Eqs. 5.3.2 and 5.3.3, we obtain:

σ2[C|Q] =
∫ +∞

0

(
aK

Q
+ ac+

hQ

2

)2

· p(a)da−
[∫ +∞

0

(
aK

Q
+ ac+

hQ

2

)
p(a) da

]2
=
(
K

Q
+ c

)2 ∫ +∞

0

a2p(a)da+ 2
(
K

Q
+ c

)(
hQ

2

)∫ +∞

0

a p(a) da(
hQ

2

)2 ∫ +∞

0

p(a) da−
[(

K

Q
+ c

)∫ +∞

0

a p(a)da +
(
hQ

2

)∫ +∞

0

p(a)da
]2

We recall that for a normal random variable X ∼ N (µ, σ2) the cumulative distribution
function is defined as follows:

Φµ,σ2(x) =
∫ x

−∞

1
σ
√

2π
e−(u−µ)2/(2σ2)du = Φ0,1

(
x− µ
σ

)
, (5.3.5)

where tables are provided to compute the standard cumulative distribution function
Φ0,1(x). In particular, we know that Φµ,σ2(+∞) = 1 and looking up in the tables, we
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find that Φµ,σ2(0) = Φ0,1(−µa/σa) = Φ0,1(−2) ≈ 0. So:

σ2[C|Q] =
(
K

Q
+ c

)2

E[a2] +
(
hQ

2

)2 [
Φµa,σ2

a
(+∞)− Φµa,σ2

a
(0)
]

+ 2
(
K

Q
+ c

)(
hQ

2

)
µa

−
(
K

Q
+ c

)2

µ2
a −

(
hQ

2

)2 [
Φµa,σ2

a
(+∞)− Φµa,σ2

a
(0)
]2

− 2
(
K

Q
+ c

)(
hQ

2

)
µa
[
Φµa,σ2

a
(+∞)− Φµa,σ2

a
(0)
]

≈
(
K

Q
+ c

)2

σ2
a +

(
K

Q
+ c

)2

µ2
a +

(
hQ

2
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+ 2
(
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+ c
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−
(
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+ c
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µ2
a −

(
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− 2
(
K
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)(
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µa

≈
(
K

Q
+ c

)2

σ2
a (5.3.6)

We also plot this σC against Q in Figure 5.13 (assuming fixed cost parameters K and
c, and demand variance σ2

a ). Comparing the two curves in Figure 5.13 shows that
the estimated curve is an adequate approximation.

From Figures 5.12 and 5.13 we derive the ‘estimated robust optimal’ order quantity
(say) Q̂+, which we define as the quantity that minimizes the estimated mean Ĉ while
keeping the estimated standard deviation σ̂C below a given threshold T :

min
Q

Ĉ

s.t. σ̂C ≤ T
(5.3.7)

We solve this constrained minimization problem through MATLAB’s fmincon. For
example, if T = 4.25 × 104 = 42500, then Figure 5.13 implies Q̂+ = 2.8568 × 104 =
28568. However, let T become smaller, e.g., T = 4.15 × 104 = 41500. Then Figure
5.13 implies Q̂+ = 3.5222× 104 = 35222; see Figure 5.14, in which the curve becomes
a horizontal line with ‘height’ Q̂+ if the threshold is high enough.

We point out that Section 5.2 gave the classic EOQ Q̂o = 28636, assuming the
demand rate equals the nominal value. Now we use a different model, assuming
different demand rates. The latter model gives an estimated optimal order quantity
Q̂+ that differs from Q̂o. This difference is nearly 25% if the managers are risk-averse
(low threshold T ).

We assume that managers cannot give a single, fixed value for the threshold, so we
vary the threshold over the interval [41067, 43200]. This gives the estimated Pareto
frontier in Figure 5.15. This figure demonstrates that if managers prefer low costs
variability, then they must pay a price; i.e., the expected cost increases.

We repeat the experiment with a smaller σa (lower demand variability), which
implies a less volatile environment. Some reflection shows that we cannot keep the
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Figure 5.14: Regression estimated robust optimal value for EOQ against threshold
for standard deviation of cost

threshold values T the same in environments with different magnitudes of volatility.
The new threshold values give the estimated Pareto frontier of Figure 5.16. Compar-
ing the estimated Pareto frontiers of Figures 5.15 and 5.16 demonstrates that a less
volatile world gives lower mean cost. Moreover, this comparison quantifies the ben-
efits of obtaining more information on the uncertain demand rate (e.g., a marketing
survey may decrease the standard deviation of the demand rate).

The estimated Pareto frontier is built on the estimates ζ̂, so we further analyze this
frontier. Whereas Myers and Montgomery (2002) use rather complicated confidence
intervals, we use parametric bootstrapping. Sampling from a multivariate normal
distribution according to Eq. 3.2.32 and performing all the steps described in Section
3.2, we obtain two bootstrapped regression models, Ĉ∗b and σ̂C∗b (b = 1, . . . , B). We
then solve the constrained optimization process using these metamodels, to derive B
estimated Pareto frontiers: the results are depicted in Figure 5.17, where we select
B = 50 and derive the true Pareto frontier from the analytical costs and its standard
deviation (5.3.1); we also display the original estimated frontier of Figure 5.15. This
figure demonstrates that bootstrapping gives a good idea of the variability of the
estimated Pareto frontier; the bundle of bootstrapped curves ‘envelop’ the original
estimated curve and the true curve. We observe that the bundle of bootstrapped
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Figure 5.15: Estimated Pareto frontier for EOQ simulation, based on regression meta-
models, with threshold for standard deviation of cost

estimated costs does not completely “cover” the true curve; neither does the bundle
for the bootstrapped standard deviations; see Figures 5.18 and 5.19.

Moreover, it is possible to further detail such analysis by determining a confidence
region based on the bootstrap estimates of the Pareto frontier. Such a region will
provide a quantitative measure of the variability of the outputs of the performed
optimization process, due to the variability of the estimated metamodel parameters.
Moreover, as discussed by Kleijnen and Gaury (2003), confidence regions can also be
useful to determine whether the difference in the solutions obtained by alternative
approaches is significant or not. At this aim, we follow Kleijnen and Gaury (2003),
and compute a (1 − α) confidence region according to the following equation, as
suggested by Johnson and Wichern (1992):

B
(
Y −Yb

)T
S−1

(
Y −Yb

)
≤ 2(B − 1)

B − 2
f2;B−2(1− α) (5.3.8)

where Yb =
(
Ĉ∗b , σ̂C∗b

)
denotes the b-th pair of bootstrapped criteria, Y =

∑B
b=1 Yb/B

is the classic estimator for the mean, S =
∑B
b=1(Yb − Y)(Yb − Y)T is the classic

estimator for the covariance matrix, and f2;B−2(1 − α) denotes the (1 − α) quantile
of the F -statistic with (2, B − 2) degrees of freedom.
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Figure 5.16: Less volatile world: estimated Pareto frontier for EOQ simulation with
threshold for standard deviation of cost

Notice that this method asks the two output factors to be bivariate normally dis-
tributed; therefore, we first need to verify this hypothesis. We performed the test
described in what follows, again according to Johnson and Wichern (1992): we define
the Squared Generalized Distance as

D2
b =

(
Yb −Y

)T
S−1

(
Yb −Y

)
, b = 1, . . . , B (5.3.9)

When the parent population is bivariate normal, each squared generalized distance
D2
b should follow a χ2 distribution. Therefore a simple — though rough — procedure

to check whether the normality hypothesis holds would be to compute the fraction
of points within a contour and compare it with the theoretical probability according
to D2

b ≤ χ2
2(0.50). If around half of the squared generalized distances is smaller

than the 50% quantile of the χ2 statistic with 2 degrees of freedom, then the null
hypothesis of bivariate normality is accepted. A more formal method for judging the
joint normality of the bootstrapped data set is based on the so-called chi-square plot,
which is obtained as follows:

1. Order the squared generalized distancesD2
b from smallest to largest asD2

(1), . . . , D
2
(B).

2. Graph the pairs
(
D2

(b), χ
2
2((b− 1/2)/B)

)
, where χ2

2((b − 1/2)/B) is the (b −
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Figure 5.17: Bootstrapped Pareto frontiers, original estimated frontier (dashed curve),
and true frontier (heavy curve), based on regression metamodels

1/2)/B quantile of the χ2 distribution with 2 degrees of freedom.

The resulting plot should resemble a straight line. A systematic curved pattern sug-
gests lack of normality, whereas a few points highly deviating from the linear behaviour
denote possible outliers, which might require further analyses.
To illustrate the procedure described so far, we select a threshold value, e.g. T =
42660, and extract the optimal solutions of the optimization problem in Eq. 5.3.7
solved on theB pairs of bootstrapped metamodels; these points are plotted in Fig. 5.20
and used to compute the 90% confidence region (i.e. α = 0.10), which is delimited by
the ellipse shown in the figure. The test for normality returned the chi-square plot
in Fig. 5.21: we can observe that — based on this plot — the normality assumption
is not fully satisfied; nevertheless, for our purposes, we consider such result to be ac-
ceptable. In order to develop a more accurate study, we should mention that, in case
the outputs are not normally distributed, we can properly transform them in order to
let them be “near normal”. The transformation we suggest to apply is the so-called
power transformation, which is now shortly described: focussing on the bivariate case,
let λ1, λ2 be the power transformations for the two measured characteristics; then,
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Figure 5.18: Bootstrapped estimated costs, based on regression metamodels, and true
cost (heavy curve)

each transformed variable is defined as follows:

x(λk) =


xλk − 1
λk

λk 6= 0

lnx λk = 0
, (5.3.10)

where x denotes the original non-normal variable and x(λk) is the corresponding trans-
formed variable (k = 1, 2). Each λk can be selected by maximizing

`k(λk) = −n
2

ln

 1
n

n∑
j=1

(
x

(λk)
kj − x

λk

k

)2

+ (λk − 1)
n∑
j=1

lnxkj (5.3.11)

where xk1, . . . , xkn are the n observations on the k-th variable (k = 1, 2) and

x
(λk)
k =

1
n

n∑
j=1

x
(λk)
kj . (5.3.12)

For further details on power transformation methods, refer to Johnson and Wichern
(1992).
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Actually, we can validate our (fast) bootstrap procedure as follows. Our EOQ
simulation is the opposite of expensive simulation: some realistic simulations take
hours or weeks for a single run, whereas bootstrapping this simulation’s results still
takes only seconds. So we repeat our LHS sample (say) L times; i.e., we sample the
demand rate a from the normal distribution in (2.1.15) cut-off at zero, while keeping
the five Q values in Table 5.5 fixed. This sample of L macroreplicates gives the
regression estimate ζ̂l with l = 1, . . . , L. This ζ̂l gives Ĉl (costs estimated through
RSM metamodel) and σ̂Cl

(corresponding standard deviation). Figures 5.22 and
5.23 display the 50 Ĉ-curves and the 50 σ̂C-curves respectively, computed from 50
macroreplicates. Note that the latter figure suggests that the 50 estimated curves
coincide, but zooming-in reveals that the 50 curves do not coincide: these curves have
little spread; see Figures 5.24 and 5.25. We point out that each macroreplicate gives a
different mean and standard deviation for the coded variable x2; e.g., x2;l = mink al;k
with l = 1, . . . , 50 and k = 1, . . . , 5.

There is no solution for the constrained optimization problem if the LHS happens
to result in an extremely high σ̂C . Actually this happened once in our 50 macrorepli-
cates; we simply threw away this macroreplicate, and sampled again.

Together with the threshold T this gives the estimated Pareto frontier. Repeating
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Figure 5.20: 90% confidence region based on bootstrapped estimates of mean cost
and standard deviation, based on regression metamodels, for T = 42660.

this LHS L times gives a set of L estimated Pareto frontiers; see Figure 5.26 with
L = 50. This figure suggests that these estimated curves all intersect near the point
(4.11, 8.83), but zooming-in around this point reveals that the 50 curves do not inter-
sect in a single point. Notice that Figure 5.26 assumes that a second-order polynomial
is a perfect approximation of the true I/O function, whereas the true EOQ formu-
las in (2.1.4) and (5.3.1) show that this assumption is false. Comparing this figure
and Figure 5.17 shows that the macroreplicates give a tighter bundle. As will be ex-
plained later on, this phenomenon is explained by the negative correlations between
estimated regression coefficients in the macroreplicates. In general, we could argue
that — compared with bootstrapping — macroreplicates use much more computer
time, and provide more information so the spread in the estimated Pareto curves is
smaller.

Figure 5.27 shows that if we replace LHS by crude sampling in the macroreplicates,
then bigger spread results; i.e., LHS is indeed a variance reduction technique. This
bigger spread is caused by a bigger spread in the estimated regression coefficients; e.g.
Figure 5.28 shows the Box plot for the estimated interaction δ̂1;1.

It is interesting that the spread of the estimated regression coefficients is smaller
for the bootstrap than for the macroreplicates using LHS; nevertheless, the boot-
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Figure 5.21: Chi-square plot of the bootstrapped estimates of mean cost and standard
deviation, for T = 42660.

strap gives more spread in the Pareto curves. The explanation is that the estimated
regression coefficients in the metamodel for the standard deviation are negatively cor-
related (so they compensate variations in each other’s values) in the macroreplicates,
whereas they are independent in the bootstrap. More precisely, the covariance matrix
in (3.2.32) implies that in our experiment cov(γ̂∗1(−i), δ̂

∗
1;1(−i)) = 0; for the macrorepli-

cates we use MATLAB Symbolic Math Toolbox (see The MathWorks Inc., 2007) to
derive that the correlation coefficient cor(γ̂1(−i), δ̂1;1(−i)) is -1; see Figure 5.29.

Finally, we compare the (traditional Taguchian) crossed design in Table 5.5 with a
CCD. A CCD for two factors (Q and a) consists of a 22 design (the four combinations
of the two extreme values per factor −1 and 1), the four ‘axial’ points ((0,−

√
2),

(0,
√

2), (−
√

2, 0), (
√

2, 0)), and the central point ((0, 0)) in coded values; the value√
2 is selected to make the CCD ‘rotatable’ (see Myers and Montgomery (2002)). The

original input values plus the corresponding output values are displayed in Table 5.10.
Note: A CCD is not a subset of Table 5.5, because a CCD does not sample any

factor value, whereas Table 5.5 uses LHS for the environmental factor a. Consequently,
Table 5.5 does not have (say) coded values −1 and 1 for a, which are at exactly the
same distance from 0.

We again validate the resulting metamodel through cross-validation; details are
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Figure 5.22: Replicated regression estimated costs, and true cost (heavy curve)

given in Table 5.11 and Figure 5.30.
We repeat our analysis for this CCD. This gives the Pareto frontier of Figure 5.31.

Comparison of Figures 5.17 and 5.31 shows that the CCD with its nine combinations
gives a better estimate of the true frontier (the heavy curve in Figure 5.17) than the
5×5 crossed-design does. We conjecture that the bigger design gives a more accurate
OLS estimator ζ̂ of the wrong (misspecified) metamodel (namely, a second-order
polynomial) for the true I/O function implied by the EOQ simulation model.

5.4 Simulation Optimization of the classic EOQ us-
ing Kriging

Before applying the approach discussed in Section 4.2 to the EOQ model, we use
classic optimization; i.e., we ignore the uncertainty of the environment (in the next
section we do account for a specific type of uncertainty).

We use the same data used for fitting the regression model, which were shown in
Table 5.1. Based on these I/O data, we estimate a Kriging metamodel; see Fig. 5.32,
which also displays the true I/O function and the second order polynomial metamodel
used in Section 5.2.
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Table 5.10: I/O simulation data for EOQ model with CCD design
Q a C

19393.40 5559.67 61945.81
19393.40 10529.69 114721.4
40606.60 5559.67 63330.64
40606.60 10529.69 114499.6

15000 8044.68 89132.55
45000 8044.68 89342.05
30000 4530.34 51615.54
30000 11559.02 124713.8
30000 8044.68 88164.67

Table 5.11: Cross-validation of regression metamodel for RO of EOQ, based on CCD
i β̂0(−i) β̂1(−i) β̂1;1(−i) γ̂1(−i) δ̂1;1(−i) ŷ(−i) ŷ(−i)/Ci
0 88136.81 182.41 529.35 25915.14 -401.66
1 88188.84 110.87 542.36 25843.59 -258.57 62518.17 1.0092
2 88155.43 156.81 534.00 25940.74 -452.86 114926.23 1.0018
3 88137.85 183.85 529.61 25913.70 -404.54 63342.16 1.0002
4 88104.44 137.91 521.26 25870.64 -490.66 114143.59 0.9969
5 88182.69 271.64 414.63 25915.14 -401.66 88627.80 0.9943
6 88110.59 233.40 594.89 25915.14 -401.66 89630.45 1.0032
7 88063.51 182.41 578.21 25962.65 -401.66 51346.78 0.9948
8 88178.26 182.41 501.71 25942.01 -401.66 124865.80 1.0012
9 88126.36 182.41 536.32 25915.14 -401.66 88126.36 0.9996
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els, and true standard deviation (heavy curve)

To validate this Kriging metamodel, we use cross-validation. This gives the scat-
terplot in Fig. 5.33 for Kriging, which also shows the corresponding scatterplot for the
RSM model from Fig. 5.8. The relative prediction errors ŷ−i/Ci for Kriging are given
in Table 5.12, which can be compared to the analogue Table 5.2. This validation shows
that Kriging does not perform much better than the second-order polynomial does;
we justify this result through observing that the EOQ model has a simple, smooth
I/O function that is well approximated by a second-order polynomial in our relatively
small experimental area (Taylor series argument); see also Allen et al. (2003).

To estimate the optimum (say) Q̂o, we use MATLAB’s fmincon (but we could
have used any other solver). This gives Q̂o = 25330 and the estimated minimal cost
Ĉo = 87523. To verify the estimated optimum, we compute Q̂o/Qo = 25330/25298 =
1.0013 and Ĉo/Co = 87523/87589 = 1.0008 so not only the cost virtually equals the
true minimum, but also the optimal input is very close to the true optimal order
quantity, being only 0.13% off.

We also experiment with a smaller experimental area; i.e., a smaller Q range.
The smaller Q range gives a more accurate metamodel; both the resulting estimated
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Figure 5.24: Zoom: Mean Cost, estimated through 50 macroreplicates

Table 5.12: Cross-validation of Kriging metamodel for EOQ total cost.
i ŷ−i ŷ−i/C̄i
1 84924.76 0.9922
2 85147.72 1.0058
3 85371.79 1.0073
4 85523.74 1.0030
5 85068.57 0.9894

optimum and the corresponding cost are much smaller than 0.1% w.r.t. the ana-
lytical solution. This is also evident from Figure 5.34, where the RSM and Kriging
metamodels are depicted, together with the analytical model for the total cost.

5.5 Robust optimization of EOQ model using Taguchi
and Kriging

Now we deal with the robust simulation-optimization of the EOQ, and — as men-
tioned in Section 2.1.3 — we assume that a (demand per time unit) is an unknown
constant, having a Normal (Gaussian) distribution with mean µa and standard de-
viation σa: a ∼ N (µa, σa). Analogously to what we did in Section 5.3, we as-
sume µa = 8000 (‘base’ value used in classic optimization), and we experiment with
σa = {0.10; 0.50}µa (uncertainty about the true input parameter). We apply the two
general methods that have been discussed in Section 4.2.
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Kriging models for mean and standard deviation estimated from simula-
tion I/O data

We use the same DoE built in Section 5.3, i.e. we select nQ = 5 equally spaced values
for the control variable Q and na = 5 values for the noise factor a according to a
LHS design. We cross the two designs and run the simulation model for these 5 × 5
combinations of the (control and noise) inputs. The simulation I/O data are those
given in Table 5.5. From this table we use (4.2.1) and (4.2.2) to estimate the mean
and the standard deviation of the cost C given Q:

Ci =
1
na

na∑
j=1

Cij (i = 1, . . . , nQ) , (5.5.1)

si(C) =

 1
na − 1

na∑
j=1

(
Cij − C̄i

)21/2

(i = 1, . . . , nQ) . (5.5.2)

Using these estimators, we fit one Kriging metamodel for the mean cost and one
Kriging metamodel for the standard deviation of cost. Obviously, each of these meta-
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Figure 5.26: Pareto frontiers estimated from 50 macroreplicates, and true frontier
(dotted curve)

models is based on nQ = 5 observations. The two models are shown in Figs. 5.35 and
5.36.

We validate the two metamodels, using leave-one-out cross validation. The scat-
terplots in Figs. 5.37 and 5.38 display y1 and y2, the Kriging predictors for the mean
and standard deviation. These two figures give the impression that these two Kriging
metamodels are not accurate. However, the scaling of scatterplots may be mislead-
ing, so we also compute the relative prediction errors: see Table 5.13. Because of the
results in this Table we accept the two Kriging metamodels.

Table 5.13: Cross-validation of Kriging metamodels for mean and standard deviation
of costs

i ŷ1,−i ŷ1,−i/C̄i ŷ2,−i ŷ2,−i/si(C)
1 84924.76 0.9922 30349.84 0.9855
2 85147.72 1.0058 30155.58 1.0040
3 85371.79 1.0073 29566.37 0.9970
4 85523.74 1.0030 29488.29 1.0020
5 85068.57 0.9894 29501.21 1.0077
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Figure 5.27: Crude sampling: replicated regression estimated Pareto frontiers

Based on these two Kriging metamodels, we find the order quantity that minimizes
the mean cost, while the standard deviation does not exceed the given threshold T .
We solve this constrained optimization problem. Next we vary this threshold, and
find the set of optimal solutions that estimates the Pareto frontier; see Fig. 5.39.

Note: We select a range for the threshold T that differs from the range chosen
to solve the corresponding problem based on RSM in Section 5.3, because selecting
the same range would have resulted in an unconstrained optimization problem so the
Pareto frontier would have been a single point.

We repeat the experiment using a larger design, namely nQ = 25 values for Q.
This experiment implies 25 × 5 = 125 simulation runs, but (5.5.1) and (5.5.2) imply
that only 25 observations are used to fit the two Kriging metamodels. The resulting
two metamodels for the mean and standard deviation are not reported here, since
they are not so different in the shape from the previous metamodels; neverthless, we
mention that these metamodels give more accurate predictions.

Single Kriging metamodel for mean and standard deviation

In Chapter 3 and in Section 5.3 — following Myers and Montgomery (2002) — we
assume that a valid metamodel is the low-order incomplete polynomial metamodel in
(3.2.8); that model implies the mean and variance presented in (3.2.15) and (3.2.16).
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In a similar way we now assume that the generic Kriging model in (4.1.7) is a valid
metamodel. That model has coefficients c that vary with the point to be predicted;
it does not give an explicit mean and variance like (3.2.15) and (3.2.16).

To estimate the Kriging coefficients c, we select a relatively small number of input
combinations for the simulation model through a space-filling design for both the
noise factor a and the control factor Q; i.e., we select na × nQ = 5 × 5 = 25 input
combinations. To avoid extrapolation when using the Kriging metamodel in the next
procedure, we select min aj = max(µa − 3σa, ε), with ε a small positive number, and
max aj = µa + 3σa. This “restriction” is important for two reasons: first, this makes
our results more realistic, since from a practical point of view the demand rate will
never be close to +∞; moreover, from a technical point of view, we need to limit
the possible values for the demand rate to a given range. If not — depending on the
values that have been sampled in the initial design — the Kriging model might be
asked to extrapolate every time sampled demand rate values do not fall into the initial
range.
To have an idea of what this imply, we present a plot of the initial 5 × 5 design,
when no bounds on the demand rate are applied, compared to a bigger 25× 100 set
where Kriging predictions are required; we checked that 36 out of 100 values of the
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Figure 5.29: Scatterplot of γ̂1 and δ̂1;1 in macro-replicates (left-hand side) and boot-
strap (right-hand side)

demand rate fall outside the initial range, thus requiring 25× 36 = 1600 extrapolated
predictions. The two designs are shown in Fig. 5.40.

As Kleijnen and van Beers (2004) observed, Kriging may give very bad predictions
in case of extrapolation, even for a valid metamodel. This is confirmed by our exper-
iments: as it can be seen from Fig. 5.41, the approximation is not very good, except
for the central region, where the points almost lay on the bisector of the quadrant.
These bad results are related to the fact that — as highlighted before — some points
required the Kriging metamodel to extrapolate; restricting the scatterplot only to the
observations corresponding to demand values belonging to the initial range, we obtain
the plot in Fig. 5.42.

These “intermediate” experiments have been mentioned only to justify the seeming
limitations introduced by imposing bounds on the demand rate. Therefore, the input
data obtained through our space-filling design result in Table 5.14, which also displays
the corresponding simulation outputs Cij .

This table gives a Kriging metamodel; applying cross validation gives the scatter-
plot shown in Figure 5.43.

The fitted Kriging metamodel is used in the following procedure:
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Table 5.14: I/O space-filling design from EOQ simulation - Approach 2
Q a C

18640.03 18769.65 202575.95
31386.79 17318.21 184511.29
35155.24 5379.43 60903.82
18107.86 8468.38 93011.95
44047.65 2542.48 32724.63
42946.04 7106.25 79489.99
28846.06 5995.76 66778.71
22032.37 16418.89 176436.35
38936.17 19664.18 208542.61
26330.04 15059.09 161403.59
31836.19 8897.71 97106.37
36113.40 2397.15 30185.10
20831.92 752.85 11086.91
27613.03 3827.83 44083.69
22463.79 13876.97 149552.29
29950.48 12445.40 133932.93
17374.52 15599.21 169372.13
39415.71 11269.88 122042.20
33294.33 13377.21 143587.66
23435.46 9717.58 105666.91
41449.15 4305.93 50523.29
15168.58 10985.10 120816.72
40518.27 7487.13 83166.44
37411.17 18082.07 192232.37
24837.19 1347.09 17847.36
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Figure 5.30: Scatterplot of the EOQ regression metamodel for CCD

1. We use LHS to sample Na � na values from the distribution of the noise
variable a, and a space filling design to select NQ � nQ values for the control
variable Q. We select Na = 100 and NQ = 25. Note that the probability of
exceeding the upper bound for a is negligible; nevertheless if this event occurs,
we resample.

2. Then we combine the values of Step 1 into NQ ×Na input combinations.

3. We compute the Kriging predictions Ĉij for the combinations of Step 2, using
the Kriging metamodel estimated from the small experiment with the simulation
model.

4. We use these predictions Ĉij to estimate the NQ conditional means and standard
deviations of the cost C:

Ĉi =
1
Na

Na∑
j=1

Ĉi,j (i = 1, . . . , NQ) , (5.5.3)
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Figure 5.31: Bootstrapped Pareto frontiers, original estimated frontier (dashed curve)
and true Pareto frontier (heavy curve) based on CCD

σ̂i =
1

Na − 1

Na∑
j=1

(
Ĉij − Ĉi

)2

(i = 1, . . . , NQ) , (5.5.4)

which are analogous to (5.5.1) and (5.5.2) but do assume a valid metamodel.

5. Finally, we fit two Kriging metamodels, namely one to the NQ means and one
to the NQ standard deviations.

The Kriging models resulting from Step 5 are displayed in Figs. 5.44 and 5.45.
The scatterplots for these two metamodels look very good: all points are near

the 45◦ line, so we do not display these two figures. Cross-validation gives relative
prediction errors that are very close to zero; e.g., ŷ1,(−1)/Ĉ1 = 0.9999998998 and
̂y2,(−24)/σ̂24 = 1.0000000089.

We solve the constrained optimization problem, using fmincon. Next we vary the
threshold T , albeit over a range that differs from the previous range to get interesting
results, namely neither unconstrained nor infeasible. The resulting Pareto frontier
resembles Figure 5.39 so we do not display it.

To verify our approach, we run the simulation model itself (not the Kriging meta-
model) for the big NQ × Na = 25 × 100 design. Notice that we can perform this
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Figure 5.32: Kriging metamodel of EOQ total cost.

simulation because the EOQ simulation is inexpensive; i.e., these 2500 simulation
runs take only 20 minutes on a PC with Windows XP, 1 GB RAM and 2.13 GHz.
Next, we compute the sample mean and standard deviation using (5.5.1) and (5.5.2)
replacing na and nQ by Na and NQ, respectively. Then we fit Kriging metamodels to
these means and standard deviations (cross-validation gives relative prediction errors
very close to zero; e.g., ŷ(−1)/Ĉ1 = 0.9999977251 and ŷ(−24)/σ̂24 = 1.0000000851).
The resulting Pareto frontier is compared with the Pareto frontier resulting from our
less expensive approach that uses (5.5.3) and (5.5.4); the two curves are shown in
Figure 5.46.

Bootstrapping the estimated Pareto frontier

The estimated Pareto frontier is built on the random simulation outputs Cij , so we
further analyze this frontier. As we explained in Section 4.2, we use distribution-
free bootstrapping. This bootstrap gives Kriging metamodels for Ĉ∗b and σ̂C∗b (b =
1, . . . , B); they are shown in Figs. 5.47-5.48 for the two approaches discussed before.

We now consider the ‘original’ (i.e. not bootstrapped) Pareto frontier: for each

threshold value T we have an optimal solution, Ĉ
+

and ŝ(C)+, which give the optimal
order quantity Q̂+. Then, we use the bootstrapped Kriging metamodels to predict
the mean cost and standard deviation for each optimal decision variable Q̂+. In
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Figure 5.33: Scatterplot for Kriging metamodel of EOQ total cost.

order to show the results through clear figures, we select only two values of the
threshold T , corresponding to opposite situations, when the managers are either risk-
averse (small T ) or risk-seeking (high T ); the plots obtained are shown in Fig. 5.49,
where the ‘star’ denotes a point belonging to the ‘original’ Pareto frontier and the
‘dots’ are the bootstrapped predictions. On the same plot, it is also depicted an
ellipse representing a 90% confidence region for the bootstrapped optimal solutions,
according to the approach proposed by Kleijnen and Gaury (2003) and outlined in
Sect. 5.3. We point out that the red star is not expected to be inside the elliptical
region, since such ellipse is computed based on the bootstrapped estimates and does
not represent a confidence region for the optimal solution belonging to the original
Pareto frontier (i.e. the red star). We further observe that we compute the optimal
solution represented by the red star through solving the optimization problem in
Eq. 5.3.7, given T , adopting a Kriging metamodel based on specific estimates of its
parameters; the elliptical confidence region, instead, accounts for possible variability
in the metamodel parameters. To confirm that the hypothesis of bivariate normal
output is satisfied, we also show the chi-square plot in Fig. 5.50; we depict only the
one corresponding to T = 40000, since the plot associated to T = 41560 does not
differ so much.
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Figure 5.34: Kriging metamodel of EOQ total cost for smaller Q-range.
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Figure 5.35: Kriging metamodel for the mean cost.
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Figure 5.36: Kriging metamodel of the standard deviation of the cost.
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Figure 5.37: Scatterplot of Kriging metamodel for mean cost.
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Figure 5.38: Scatterplot of Kriging metamodel for standard deviation of the cost.
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Figure 5.39: Estimated Pareto frontier for EOQ based on Kriging metamodels.
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Figure 5.40: Initial design (red diamonds) and points for predictions (blue dots).
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Figure 5.41: Scatterplot of Kriging predictions for total cost versus observed values.
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Figure 5.42: Scatterplot of Kriging predictions for total cost versus observed values
(removing extrapolations).



108 Chapter 5

0 0.5 1 1.5 2 2.5

x 105

0

0.5

1

1.5

2

2.5
x 105

C

C
es

tim

Figure 5.43: Scatterplot for Kriging metamodel of EOQ total cost - Approach 2.
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Figure 5.44: Kriging metamodel for mean cost based on Kriging predictions
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Figure 5.45: Kriging metamodel for the cost’s standard deviation based on Kriging
predictions
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Figure 5.47: Bootstrapped Kriging metamodels for the estimated mean (above) and
standard deviation (below) of the total cost — Approach 1.
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Figure 5.48: Bootstrapped Kriging metamodels for the estimated mean (above) and
standard deviation (below) of the total cost — Approach 2.
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Figure 5.49: Bootstrapped estimations of mean cost and standard deviation and
90% confidence region, based on Kriging metamodels, for T = 40000 (above) and
T = 41560 (below) — Approach 1.
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Figure 5.50: Chi-square plot of the bootstrapped estimates of mean cost and standard
deviation, based on Kriging metamodels, for T = 40000 — Approach 1.

It should be pointed out that the results referred to as Approach 1 are not directly
obtained to what discussed before; in fact, in order to apply our bootstrap procedure,
we need to take a bigger number of observations for each value of the order quantity.
Therefore, we repeated all the experiments in Approach 1 taking na = 25 values for
the demand rate. The results for a small and a high threshold T based on Approach
2 are depicted in Fig. 5.51, together with the corresponding 90% confidence regions.
The chi-square plot referred to T = 38580 is shown in Fig. 5.52, confirming that the
hypothesis of bivariate normality is acceptable.

We also experimented with smaller uncertainty on the demand rate, namely choos-
ing σa = 0.10µa. We performed all the steps described so far, both for Approach 1 and
for Approach 2; although we will not show all the details on the results we obtained,
we remark some implications of reducing the uncertainty on the noise factors. First
of all, it is reflected in a reduced variability in the metamodels for both the expected
total cost and its standard deviation: looking at Figs. 5.53-5.54 it is evident — es-
pecially focussing on the scale for the y-axis — that the spread of the bootstrapped
Kriging metamodels is reduced, for both the approaches.

The described behaviour is also confirmed by computing the bootstrapped esti-
mations of the mean and standard deviation of the total cost corresponding to the
optimal Q-values producing the ‘original’ Pareto frontier. Again, we considered two
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Figure 5.51: Bootstrapped estimations of mean cost and standard deviation and
90% confidence region, based on Kriging metamodels, for T = 38580 (above) and
T = 40060 (below) — Approach 2.
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Figure 5.52: Chi-square plot of the bootstrapped estimates of mean cost and standard
deviation, based on Kriging metamodels, for T = 38580 — Approach 2.
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Figure 5.53: Bootstrapped Kriging metamodels for the estimated mean (above) and
standard deviation (below) of the total cost, with smaller uncertainty — Approach 1.
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Figure 5.54: Bootstrapped Kriging metamodels for the estimated mean (above) and
standard deviation (below) of the total cost, with smaller uncertainty — Approach 2.
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extreme cases for both the approaches, selecting a small and a big value for the
threshold T ; the plot we obtained are depicted in Figs. 5.53 and 5.54, respectively.
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Figure 5.55: Bootstrapped estimations of mean cost and standard deviation and 90%
confidence region, based on Kriging metamodels, for T = 7860 (above) and T = 8200
(below) — Approach 1.
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Figure 5.56: Bootstrapped estimations of mean cost and standard deviation and 90%
confidence region, based on Kriging metamodels for T = 8100 (above) and T = 8460
(below) — Approach 2.
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Chapter 6

(s, S) Inventory Model

The (s, S) inventory model has been chosen as another example to which apply the
proposed methodology. The model we refer to has been already described in Section
2.2, so we will omit all the details on the case study description; nevertheless, we point
out that this model is not a deterministic model, as the EOQ model is, being instead
stochastic. This implies that it includes some random input components (namely, the
demand size and the orders’ lead times) which cause the outputs of interest to be
random variables themselves, which therefore have to be treated as estimates of the
true responses of the model.

The remainder of the chapter is structured as follows: first some issues related
to the implementation of the simulation model are discussed in Section 6.1, then
the experimental results on the (s, S) model are presented. More specifically, Sec-
tion 6.2 concerns the results for the classic simulation-optimization approach using
either regression or Kriging metamodels; the results of applying the classic simulation-
optimization approach to the (s, S) inventory model with a service level constraint
are discussed in Section 6.2.1. Then, Section 6.3 and 6.4 describe the results for the
robust simulation-optimization, according to what discussed in Chapters 3 for the
RSM and 4 for Kriging.

6.1 Modeling Implementation Issues

Before presenting the computational experiments we have carried out and the results
we obtained, it is worth to highlight two modeling implementation issues that have to
be dealt with. More specifically, one is related to the particular variant of the model
that we decide to consider and the other concerns the use of a variance-reduction
technique, namely Common Random Numbers (CRN). Each of them is discussed in
the following subsections.
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6.1.1 Order Crossing

As discussed in Section 2.2, we drop one major assumption in the analysis of the (s, S)
inventory system, which considers the probability distribution of the lead times such
that ordered items are received in the same sequence as the orders have been placed.
This implies that our model allows for order crossing over the periods: although this
aspect makes the model more realistic — e.g. when there are multiple suppliers —
the mathematical analysis of the model becomes more complicated and there are
no alternatives but simulation. During the verification process — which is always a
necessary step to perform before going on with any procedure based on the simulation
model (see Law, 2007) — we explicitly check that order crossing indeed occurs in some
runs.

The randomness in the lead times implies that no analytical solution exists for
this problem; therefore, we compare our results for the classic optimization with
the outcome of OptQuest, a well-known commercial software by OptTek Systems,
which treats the simulation model as a black box; its algorithms are based on tabu
search, scatter search, integer programming and neural networks (Rockwell Automa-
tion, 2004). It should be pointed out, however, that this solver takes advantage
of directly interacting with the underlying — possibly costly — simulation model,
whereas we solve the optimization problem using a metamodel: the latter approach
is usually less time-consuming, but the former can provide more accurate results.

6.1.2 Replications and Common Random Numbers

Since we are now working with a stochastic model, replications are needed (Law,
2007): this means that we make several independent runs, each using the same initial
conditions but separate sets of random numbers. This makes the simulation results
from different runs independent from each other, given the same scenario or input
combinations. When we simulate a different scenario, in order to have a “fair” com-
parison of the corresponding performance, we should keep “similar” environmental
conditions so that any differences observed in the performance of the system can be
directly connected to the different input combinations rather than justified through
possible changes in the environmental factors. The environmental factors we are re-
ferring to in the (s, S) inventory model are the demand size and the lead time. This
desirable condition might be achieved through the use of Common Random Numbers
(CRN). We will not detail this technique, for which we refer to (e.g.) Law (2007), but
we want at least to justify the use of this technique and the way we apply it to our ex-
periments. At this aim, consider two possible scenarios, which respectively lead to the
performance denoted as w1j and w2j on the j-th independent replication, and we are
interested in comparing their mean responses, thus estimating ξ = E(w1j)−E(w2j).
If we have m replications of each scenario and denote vj = w1j−w2j , for j = 1, . . . ,m,
then E(vj) = ξ so

v =

∑m
j=1 vj

m
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is an unbiased estimator of ξ. Since the vj ’s are i.i.d. random variables,

V ar(v) =
V ar(vj)

m
=
V ar(w1j) + V ar(w2j)− 2Cov(w1j , w2j)

m
.

If the simulations of the two different scenarios are done independently, i.e. using
different random numbers, then w1j and w2j will be independent, so Cov(w1j , w2j) =
0. On the other hand, if we could introduce a positive correlation between w1j and
w2j then we will get Cov(w1j , w2j) > 0, which reduces the variance of the estimator
v. This is exactly the purpose of using CRN, which let us obtain such positive
correlation by using the same random numbers to simulate all scenarios. Notice that
this is possible because of the deterministic reproducible nature of random number
generators.

An important topic in using CRN concerns synchronization of the random numbers
across the different scenarios on a particular replication: this means that we should
use a specific random numbers for the same purpose in all the scenarios. Losing
synchronization among the streams can produce very bad results, thus destroying
any potential benefit of using CRN. In order to achieve this purpose, we adopt stream
dedication, i.e. we use one random number stream for each random variable involved
in the simulation model: in our (s, S) model we will use one stream for the demand
size and another independent separate stream for the lead time.

A final remark is related to the correctness of achieving complete synchroniza-
tion of all sources of randomness: referring to the (s, S) inventory model, it appears
reasonable and highly desirable for what discussed so far that different input combi-
nations (s, S) will face exactly the same demand in each period n of the simulation
run, within the same replication. We probably would like to do something similar
for the order lead time. However, due to the different values of s and S, orders will
generally be placed at different times, so the total number of orders placed during the
N observed periods will also differ. As a consequence, it might be difficult to keep the
two streams synchronized throughout the N periods; moreover, this can be even non-
sense, so it can be better to just generate the order lead time values independently
across the different input combinations. However, we will use a common stream of
random numbers for the lead time, since we expect it not to ‘damage’ our results,
though being aware that it will not achieve the purpose of variance reduction.

As for the number of replications to run for each input combination, we keep it
fixed in our experiments and take m = 10. The choice of this value is supported
by the verification that the half-length `h(m,α) of the 100(1− α) percent confidence
interval for the average simulation outputs wh(di) is within γ% of the true mean for
all outputs h and for all input combinations di. Therefore, based on Law (2007), if

∀h :
`h(m,α)
|wh(di)|

≤ γ

1 + γ
(6.1.1)

then m realizes the relative precision γ with 0 < γ < 1. The half-length of the
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100(1− α) percent confidence interval is given by

`h(m,α) = tm−1;1−α/2

√
̂var(wh(di))
m

(6.1.2)

where tm−1;1−α/2 denotes the (1−α/2) quantile of the tm−1 distribution. The average
simulation output is given by Eq. 3.2.21, and the estimated variance is given by Eq.
3.2.24.

6.2 Classic Simulation-Optimization using metamod-
els

In this section we apply a classic simulation-optimization approach based on regression
metamodels first and Kriging metamodels later on, to determine the combination
of controllable input variables leading to the minimum expected average total cost.
At this stage we only take the aleatory uncertainty into account: we restrict our
attention on the stochastic nature of the model due to some random variables (namely,
demand size and order lead time), but we assume that the parameters guiding the
corresponding probability distribution are known and equal to some constant values
(see also Kleijnen, 1983b, 1994). Notice that here — despite the uncertainty on the
demand size and on the lead time — we cannot provide a robust solution for the
optimization problem, since the source of uncertainty is intrinsic to the system itself
and cannot be removed.

Although interested in determining the optimal policy in terms of the reorder
point s and the order-up-to level S, we slightly reformulate our model such that the
variables to optimize are the reorder point s (as before) and the difference d = S−s. It
is easily understandable the reason for introducing this transformation when thinking
of a design matrix we are going to create: in fact, if we generate a DoE in the design
space of (s, S), we might obtain infeasible combinations whenever S < s, which is
clearly nonsense; generating a design on s and d avoids this problem.

We refer to Section 3.1.1 for the description of the steps we will perform; in
particular, see Fig. 3.1. When fitting a Kriging metamodel, the scheme we follow is
basically the one sketched in Fig. 3.1, apart for the specific metamodelling technique;
moreover, when working on Kriging, step 4 in Fig. 3.1 — devoted to test the regression
coefficients for significance — cannot be performed.

As a preliminary experiment, assuming not to have any information about the
most promising experimental area, we start from a large experimental area, namely
taking 500 ≤ s ≤ 1250 and 1 ≤ d ≤ 500: then we simulate 25 levels for s and 12 levels
for d over this region, thus obtaining a bi-dimensional grid of 300 input combinations.

It can be useful for further analyses to specify the output values obtained by
simulating the 300 input combinations of s and d; the I/O data are represented in
Table 6.1.



(s, S) Inventory Model 127

T
ab

le
6.

1:
I/

O
da

ta
fo

r
th

e
(s
,S

)
in

ve
nt

or
y

m
od

el
,

us
in

g
Fu

ll
Fa

ct
or

ia
l

D
oE

w
it

h
30

0
in

pu
t

co
m

bi
na

ti
on

s
d

=
S
−

s
1

4
6
.3

6
3
6

9
1
.7

2
7
3

1
3
7
.0

9
0
9

1
8
2
.4

5
4
5

2
2
7
.8

1
8
2

2
7
3
.1

8
1
8

3
1
8
.5

4
5
5

3
6
3
.9

0
9
1

4
0
9
.2

7
2
7

4
5
4
.6

3
6
4

5
0
0

s

5
0
0

6
4
8
.8

2
8
1

6
6
1
.2

8
7
7

6
7
4
.1

5
2
6

6
8
7
.0

1
9
2

6
9
9
.2

0
2
1

6
8
6
.7

4
2
6

6
5
9
.5

9
3
6

6
3
9
.2

4
4
1

6
2
5
.0

0
9
4

6
1
8
.8

1
7
6

6
1
6
.9

3
9
1

6
2
1
.5

3
6
6

5
3
1
.8

1
8
2

6
5
8
.7

3
6
1

6
7
0
.3

7
1
6

6
8
3
.2

0
3
6

6
9
5
.8

8
2
9

6
9
5
.4

6
3
2

6
6
8
.1

7
8
5

6
4
4
.5

4
0
2

6
2
7
.6

5
0
3

6
1
6
.3

1
7
4

6
1
2
.8

1
6
3

6
1
2
.8

5
3
1

6
1
8
.4

6
8

5
6
3
.6

3
6
4

6
6
7
.7

6
6
2

6
7
9
.5

4
2
8

6
9
2
.3

2
4
1

7
0
2
.2

1
8
6

6
7
7
.2

0
2
1

6
5
2
.0

0
6
5

6
3
1
.7

6
4
7

6
1
8
.0

0
1
4

6
1
1
.9

7
4
3

6
0
9
.0

1
2
2

6
1
2
.1

7
7
1

6
1
8
.2

3
6

5
9
5
.4

5
4
5

6
7
7
.5

8
0
8

6
8
8
.6

8
9
7

7
0
1
.1

9
8
8

6
8
9
.1

9
4
1

6
6
0
.4

2
1
7

6
3
9
.6

0
0
4

6
2
2
.2

8
5
2

6
1
2
.9

9
0
3

6
0
7
.8

8
1
1

6
0
8
.5

4
2
8

6
1
4
.3

2
0
9

6
2
2
.3

1
5
2

6
2
7
.2

7
2
7

6
8
8
.2

1
4

6
9
8
.5

4
5
8

7
0
2
.1

7
1
4

6
7
6
.6

6
8

6
4
6
.5

2
5
8

6
2
7
.8

8
0
2

6
1
6
.3

0
3
1

6
1
0
.5

1
8
9

6
0
7
.9

6
1
1
.1

0
2
2

6
1
9
.3

2
8
1

6
2
7
.8

1
5
1

6
5
9
.0

9
0
9

7
0
1
.9

2
4
9

7
1
2
.8

6
6
8

6
9
7
.6

9
3
3

6
6
4
.0

5
4
3

6
3
6
.6

3
5
1

6
2
1
.7

5
2
8

6
1
2
.3

1
5
2

6
1
0
.3

9
3

6
1
3
.2

6
8
6

6
1
8
.9

5
1
9

6
2
6
.9

6
2
3

6
3
7
.2

6
0
6

6
9
0
.9

0
9
1

7
2
2
.4

2
6
9

7
4
0
.7

6
6
6

6
9
3
.8

3
6
6

6
5
4
.8

7
5
9

6
2
9
.3

3
9
6

6
1
9
.0

8
4
7

6
1
2
.6

0
5

6
1
4
.2

2
3

6
1
8
.4

6
5
5

6
2
6
.5

8
3
6

6
3
7
.8

3
0
8

6
4
8
.9

7
4
2

7
2
2
.7

2
7
3

1
0
2
2
.9

9
4

7
6
4
.8

1
3
3

6
9
2
.0

0
2
5

6
5
0
.9

6
5
5

6
2
8
.0

6
6
5

6
1
8
.3

2
1
9

6
1
6
.6

0
4
1

6
2
0
.0

3
4
9

6
2
6
.4

0
2
8

6
3
8
.9

4
8
4

6
4
9
.8

1
2

6
6
2
.9

5
2
2

7
5
4
.5

4
5
5

1
4
5
9
.0

4
2

7
8
9
.8

0
4
1

6
9
2
.7

0
2
3

6
5
0
.0

7
3
8

6
2
9
.2

4
3
4

6
2
0
.9

2
0
5

6
2
3
.4

5
0
4

6
2
9
.3

6
2
1

6
3
7
.7

7
4
2

6
5
0
.8

9
9
1

6
6
2
.4

7
2
1

6
7
7
.5

6
9
8

7
8
6
.3

6
3
6

1
9
1
8
.0

7
8

8
0
9
.7

9
6
7

6
9
6
.6

7
5
3

6
5
2
.5

8
7
8

6
3
3
.4

5
5
4

6
2
9
.4

9
1
1

6
3
2
.6

8
0
3

6
3
9
.2

3
7
1

6
5
0
.3

1
6
1

6
6
4
.9

4
3
7

6
7
9
.9

7
2
9

6
9
4
.3

6
9

8
1
8
.1

8
1
8

2
4
5
5
.5

8
7

8
3
2
.6

6
2
2

7
0
4
.7

3
3
5

6
6
0
.0

5
2
2

6
4
2
.0

3
2
5

6
3
8
.5

1
7
1

6
4
5
.5

7
9
9

6
5
3
.3

2
6
7

6
6
6
.0

0
1
7

6
8
1
.5

8
2
2

6
9
6
.4

4
6
4

7
1
4
.2

6
9
3

8
5
0

2
9
6
1
.5

5
8
5
4
.7

5
2
6

7
1
3
.9

2
7
9

6
6
8
.8

3
4

6
5
4
.0

8
3
5

6
5
2
.1

3
9
4

6
5
8
.5

8
9
7

6
6
9
.0

5
3

6
8
2
.3

9
2
2

6
9
8
.4

9
6
5

7
1
6
.2

4
9
6

7
3
4
.0

9
7
2

8
8
1
.8

1
8
2

3
5
7
5
.9

4
4

8
7
6
.5

3
4
9

7
2
7
.3

0
7
8

6
8
1
.9

4
8
5

6
6
7
.6

5
3
8

6
6
7
.2

9
3
2

6
7
6
.0

4
0
2

6
8
6
.6

7
6
1

7
0
1
.1

1
5
5

7
1
7
.4

7
3
2

7
3
6
.0

5
9
7

7
5
5
.4

9
5
4

9
0
0

3
9
9
3
.9

1
6

8
8
7
.5

8
0
6

7
3
2
.3

6
9
2

6
8
6
.2

7
5
9

6
7
3
.7

1
5
8

6
7
3
.9

3
7

6
8
2
.0

8
7
8

6
9
5
.0

9
6
2

7
0
9
.7

9
0
7

7
2
6
.3

7
4
3

7
4
5
.9

4
0
9

7
6
5
.5

7
6
8

9
3
1
.8

1
8
2

4
7
2
8
.6

6
9
1
4
.1

5
8
9

7
4
9
.4

0
4
5

7
0
3
.2

5
5
2

6
9
1
.5

2
2
8

6
9
2
.2

5
6
6

7
0
1
.0

9
8
8

7
1
5
.9

9
5
5

7
3
1
.8

3
5
4

7
4
8
.0

2
6
3

7
6
6
.8

6
4
4

7
8
8
.4

9
8
5

9
6
3
.6

3
6
4

5
4
2
8
.9

1
4

9
4
1
.6

4
1
3

7
6
8
.2

2
2
9

7
2
1
.6

2
4
8

7
1
0
.1

6
0
9

7
1
2
.9

5
2
2

7
2
3
.5

2
6
5

7
3
7
.8

6
6
2

7
5
5
.1

7
9
1

7
7
1
.9

1
2
4

7
9
0
.6

7
7
3

8
1
2
.1

7
3
6

9
9
5
.4

5
4
6

6
1
3
9
.1

4
6

9
6
8
.1

9
0
3

7
8
8
.9

0
1
5

7
4
2
.5

2
7
2

7
3
1
.2

9
0
8

7
3
4
.0

8
4
9

7
4
5
.3

5
2
6

7
6
0
.5

8
7
2

7
7
8
.1

5
3
4

7
9
6
.0

5
4
8

8
1
5
.0

8
6
5

8
3
6
.9

9
0
2

1
0
2
7
.2

7
3

6
9
2
2
.4

4
5

9
9
4
.9

1
0
1

8
1
1
.2

9
4
5

7
6
4
.4

4
3
2

7
5
4
.0

3
7
5
8
.7

6
1
1

7
6
9
.6

4
1
1

7
8
3
.7

2
0
4

8
0
3
.0

3
4
3

8
2
1
.5

4
6
8

8
4
0
.4

3
8
7

8
6
2
.4

8
7
5

1
0
5
9
.0

9
1

7
8
7
3
.6

9
1

1
0
2
3
.9

8
3
5
.3

2
5
2

7
8
7
.5

9
2
4

7
7
7
.9

7
0
3

7
8
2
.8

2
5
8

7
9
4
.5

8
4
6

8
1
0
.0

5
2
6

8
2
8
.4

8
3
9

8
4
7
.0

0
3
5

8
6
7
.5

8
8
9

8
8
8
.2

4
9
4

1
0
9
0
.9

0
9

8
7
9
4
.2

4
3

1
0
5
2
.3

9
8
6
0
.1

2
7
6

8
1
2
.5

9
2
3

8
0
2
.6

6
3

8
0
8
.0

6
0
7

8
2
0
.3

1
1
9

8
3
6
.4

1
1
9

8
5
4
.9

3
1
9

8
7
4
.6

6
4
4

8
9
4
.6

6
2

9
1
5
.3

9
5
1

1
1
2
2
.7

2
7

9
6
8
4
.6

8
9

1
0
8
0
.1

0
9

8
8
6
.2

2
2
3

8
3
9
.6

3
2
6

8
2
8
.8

1
1
3

8
3
4
.7

6
1
4

8
4
7
.4

3
0
1

8
6
3
.6

7
3
6

8
8
3
.2

4
7
8

9
0
2
.2

5
5
8

9
2
1
.7

8
8
2

9
4
3
.5

5
1
4

1
1
5
4
.5

4
6

1
0
7
4
8
.1

3
1
1
1
1
.4

2
7

9
1
4
.0

4
3
6

8
6
5
.7

5
5
9

8
5
7
.0

9
8
6
2
.4

2
6
7

8
7
4
.5

9
9
4

8
9
1
.1

5
5
6

9
0
9
.8

3
4
2

9
3
0
.0

6
5

9
5
0
.6

7
8
6

9
7
1
.8

8
3
4

1
1
8
6
.3

6
4

1
1
5
1
9
.4

4
1
1
4
1
.5

0
8

9
4
1
.4

3
0
3

8
9
2
.9

2
0
8

8
8
4
.0

3
2
1

8
8
9
.8

8
8
4

9
0
2
.8

9
3
4

9
1
9
.5

0
9
5

9
3
8
.7

0
4
2

9
5
8
.8

2
0
7

9
7
9
.3

6
8
6

1
0
0
1
.0

6
7

1
2
1
8
.1

8
2

1
2
7
5
9
.2

4
1
1
6
7
.2

8
8

9
6
9
.4

0
7
4

9
2
1
.3

4
0
5

9
1
2
.2

8
3
4

9
1
8
.1

3
1
8

9
3
1
.2

1
0
3

9
4
8
.2

4
8

9
6
7
.5

2
0
7

9
8
8
.0

8
5
6

1
0
0
8
.6

6
2

1
0
3
0
.2

0
8

1
2
5
0

1
3
6
0
0
.8

5
1
2
0
0
.8

3
7

9
9
9
.1

6
7
5

9
5
0
.3

2
0
9

9
4
1
.2

2
6
9

9
4
7
.0

3
6
9

9
5
9
.9

3
0
6

9
7
7
.4

2
1
4

9
9
6
.5

4
2
7

1
0
1
7
.8

9
8

1
0
3
8
.3

2
5

1
0
5
9
.5

3
6



128 Chapter 6

Table 6.2: Regression coefficients for Full Factorial DoE based on 300 input combi-
nations

β0 βs βss βd βdd βsd
248.0494 731.1126 427.5785 −877.0716 1761.4316 −1365.4114

We also provide a graphical representation of the I/O data we are going to use to
fit both the regression and the Kriging metamodels; see Fig. 6.1.
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Figure 6.1: 3-D plot of the I/O data for the (s, S) inventory model, using Full Factorial
DoE with 300 input combinations

When using RSM, we code the input variables in order to guarantee numerical
accuracy in our results by working with a matrix of explanatory variables X having
a reasonably low condition number. We first fit a regression metamodel, having the
following structure:

y = β0 + βss+ βsss
2 + βdd+ βddd

2 + βsdsd . (6.2.1)

The values of the regression coefficients (associated to coded variables) are given in
Table 6.2; Fig. 6.2 shows the resulting metamodel.

The t-test helps us to identify non-significant effects, which can be replaced by
zero, leading to a reduced metamodel. The results suggest to replace the intercept
and the second-order effect for s by zero; all the other effects appear to be important.
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Figure 6.2: Regression metamodel for Full Factorial DoE using 300 input combinations

We do not report the results for the cross-validation procedure, since it would re-
quire a table with 300 rows. We only show the resulting scatterplot in Fig. 6.3, from
which we conclude that the metamodel is not highly accurate, its relative accuracy
being 0.8895 ≤ ŷ(−i)/Ci ≤ 1.1413. We also test the validity of the metamodel accord-
ing to the procedure described in Section 4.2, based on the Studentized prediction
error (see Eq. 3.2.27): the results obtained lead to the conclusion the metamodel is
not valid, with 197 out of 230 that did not pass the test. We mention that — although
not often used in practical applications (see Kleijnen, 2008) — we also increase the
order of the regression metamodel, to check whether the resulting metamodel pro-
vides better results; however, it turns out to be still inaccurate, the average total cost
taking some negative values on a given sub-area of the experimental region.

Then, we fit a Kriging metamodel over the same experimental area, starting from
the same DoE: the resulting 3-D plot is shown in Fig. 6.4. Although omitting all the
cross-validation results, we mention that the relative accuracy is 0.9675 ≤ ŷ(−i)/Ci ≤
1.0825 and we show the scatterplot in Fig. 6.5, from which we conclude that the
metamodel can be accepted. This conclusion is also supported by the results from
the Studentized prediction error, according to Eq. 4.2.6. Comparing Figs. 6.2 and
6.4 and based on the cross-validation results, it is noticeable that the regression model
provides poor approximation due to the particular behaviour of the output function,
which is instead well reproduced by the Kriging metamodel.
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Figure 6.3: Scatterplot of the regression metamodel for Full Factorial DoE using 300
input combinations

As can be noticed by comparing the column corresponding to d = 1 in Table 6.1
with each of the next columns, the average total cost is much higher than all the
others; this behaviour can be explained by looking at the corresponding values of
d which determine the cost in each column: the first column, in fact, is associated
to d = 1, which means that the order-up-to level is just s + 1 units. On the other
hand, the demand size follows an exponential distribution with parameter λD = 0.01;
therefore, we can compute the probability of receiving a demand for less than one
item (remember that in this study we are ignoring integer constraints) as follows:

P (D ≤ 1) = FD(D ≤ 1) = 1− e−λD·1 ≈ 0.01 . (6.2.2)

So, most probably (around 99%), the inventory would need to face a demand bigger
than 1 unit, which would immediately lead the inventory level below the re-ordering
point s causing a new order to be placed, eventually every time period, thus deter-
mining higher costs.

The big difference in the magnitude of the cost values associated to d = 1 with
respect to the observed average costs associated to all the other input combinations
gives the erroneous impression that the cost becomes almost constant over the re-
mainder of the experimental area. Therefore, we consider the costs associated to
d = 1 as outliers and eliminate this point from our design, since the corresponding
output values are clearly sub-optimal and uninteresting to be further analyzed, our
goal being to minimize the average total cost. This decision is also supported by the
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Figure 6.4: 3-D plot of the Kriging metamodel based on Full Factorial DoE using 300
input combinations

Table 6.3: Regression coefficients for Full Factorial DoE based on 300 input combi-
nations, removing d = 1

β0 βs βss βd βdd βsd
668.7668 185.7851 120.1313 −23.2856 111.7692 21.6447

optimal solution found by minimizing the average total cost using OptQuest; choosing
to stop the heuristic search after 100 non-improving solutions, the solution proposed
by OptQuest — after 454 simulations — is s+ = 571.71, d+ = 397.57, with an op-
timal cost equal to C+ = 604.97, thus confirming that the area around d = 1 is not
promising for our optimization purpose.

After removing all the samples having d = 1 from our design, we make a similar
plot to the one in Fig. 6.1, resulting in Fig. 6.6. Based on the resulting input data set,
we fit both a regression metamodel and a Kriging metamodel; for both the techniques
a significant improvement in the accuracy can be observed.

The RSM metamodel fitted on this data set gives the OLS estimates for the re-
gression coefficients reported in Table 6.3; the t-test suggests all regression coefficients
to be significant. The metamodel itself is then shown in Fig. 6.7. Although omitting
the results for the cross-validation procedure, we show the resulting scatterplot in Fig.
6.8, for which the relative accuracy is 0.9108 ≤ ŷ(−i)/Ci ≤ 1.0679. Despite the values
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Figure 6.5: Scatterplot of Kriging metamodel for Full Factorial DoE using 300 input
combinations

of the relative accuracy based on cross-validation appear to be quite good and close to
1, the regression metamodel does not pass the statistical test based on the Studentized
prediction error. This seeming contradiction can be explained as follows: having Eq.
3.2.22 in mind, we recall that we are considering a steady-state simulation, which we

achieve after a very long run; this implies that both ̂var(Ci) and ̂var(ŷ−i) are small
numbers, so their sum is small and — being in the denominator — it makes the ratio
big, eventually higher than the threshold tm−1;1−α/2, even if prediction errors remain
small. For further details on this topic we refer to the specific discussion in Kleijnen
(2008).

Fitting a Kriging metamodel on the data set from Table 6.1 after deleting the
column associated to d = 1 results in the metamodel shown in Fig. 6.9. Again
we omit the results for the cross-validation procedure, just showing the resulting
scatterplot in Fig. 6.10, for which the relative accuracy is 0.978 ≤ ŷ(−i)/Ci ≤ 1.0355.
Computing the Studentized prediction error as in Eq. 4.2.6 gives similar results
to those discussed for the regression model, i.e. not every input combination passes
the test (more precisely, only 3 out of 207 points do not pass), implying that the
metamodel should not be accepted; however, we do accept it based on the relative
prediction errors, which are smaller than 3%.

The previous experiment was indeed time consuming, since it took about 48 hours
to be completed, on a PC with Windows XP, 1 GB RAM and 2.13 GHz. However,
it gave us useful information to restrict the region of interest, thus focussing on a
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Figure 6.6: 3-D plot of the I/O data for the (s, S) inventory model, based on Table
6.1, removing column d = 1

smaller area to look for the optimal solution on the basis of a more accurate (local)
metamodel. So we select a maximin LHS (see Fang et al., 2006) based on 25 points
over the area delimited by 500 ≤ s ≤ 1100 and 50 ≤ d ≤ 400, using the on-line
tool available on the website www.spacefillingdesigns.nl. A maximin design selects
points in the design space aiming at maximizing the separation distance, i.e. the
minimal distance among pairs of points. Moreover, LHS designs are non-collapsing :
this implies that — given the levels for each factor — each level occurs exactly once
in the design. The importance of such a property becomes evident when it is not
known a priori which factors are important: in fact, if one of the design parameters
turns out to have (almost) no influence on the simulation outcome, then two design
points differing only in the value of this parameter will ’collapse’, i.e. they reduce to
the same point, which usually is not a desirable situation. Typically a grid might
generate collapsing designs.

After simulating the 25 input combinations using the Arena model, we fit a re-
gression model according to (6.2.1), using the design in Table 6.4. The values of the
regression coefficients are shown in Table 6.5. A t-test confirms to keep all the factors,
being all significant. The resulting metamodel is shown in Fig. 6.11. The regression
model provides good accuracy, as Table 6.6 shows through the relative prediction er-
rors. Notice that some input combinations are missing in the table, because they have
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Table 6.4: Maximin LHS design using 25 observations
s d = S − s

500 108.33
525 181.25
550 254.17
575 327.08
600 400
625 50
650 122.92
675 195.83
700 268.75
725 341.67
750 64.583
775 137.50
800 210.42
825 283.33
850 356.25
875 79.167
900 152.08
925 225
950 297.92
975 370.83
1000 93.75
1025 166.67
1050 239.58
1075 312.50
1100 385.42

Table 6.5: Regression coefficients for LHS based on 25 observations
β0 βs βss βd βdd βsd
641.55 89.853 95.253 −29.716 52.712 31.52
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Table 6.6: Cross-validation for RSM based on LHS using 25 observations
i ŷ(−i) ŷ(−i)/wi
2 674.47 0.964
3 635.4 0.987
4 637.64 1.042
7 690.76 1.021
8 630.77 1.009
9 608.14 0.995
10 623.77 1.004
11 731.57 0.993
12 668.2 1.032
13 632.39 1.002
14 632.71 0.979
15 671.88 0.991
16 729.99 0.978
17 691.89 1.018
18 679.87 0.988
19 706 0.979
20 774.58 1.012
21 776.94 0.985
22 764.85 1.014
23 776.85 0.999
24 833.74 1.016

not been included in the cross-validation set, in order to avoid extrapolation. The
corresponding scatterplot is given in Fig. 6.12. Then, we compute the Studentized
prediction error, which would suggest that the metamodel is not valid; however, due
to the relatively small prediction errors, we accept the regression metamodel.

Using the same design from Table 6.4, we fit a Kriging metamodel, which is shown
in Figure 6.13, together with the corresponding contour plot. The cross-validation
procedure also gives good results, comparable with those obtained when fitting the
regression model: they are represented through a scatterplot in Fig. 6.14 and sum-
marized in Table 6.7. Kriging metamodels is confirmed to provide better accuracy
than regression metamodels, even though it is not so striking as it was on the wider
experimental region, because regression metamodels usually perform better when the
region of interest is small (see (e.g.) Kleijnen, 2008; Montgomery, 2009).

Again, based on the acceptable accuracy provided through the relative prediction
errors we accept the metamodel, although the test based on the Studentized prediction
error would reject it.

Using the metamodels we have just fitted and validated, we solve the optimization
problem of minimizing the estimated average total cost (Ĉ) over the experimental de-
sign area of interest, through Matlab’s fmincon. Finally, we simulate the proposed
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Table 6.7: Cross-validation for Kriging based on LHS using 25 points
i ŷ(−i) ŷ(−i)/wi
2 686 0.980
3 646.11 1.004
4 627.81 1.026
7 681.31 1.007
8 630.6 1.009
9 611.28 1.000
10 624.55 1.006
11 724.11 0.983
12 648.69 1.002
13 628.39 0.995
14 645.15 0.998
15 678.44 1.001
16 747.56 1.001
17 688.24 1.013
18 683.94 0.994
19 733.85 1.018
20 755.53 0.987
21 766.47 0.972
22 755.11 1.001
23 776.82 0.999
24 797.32 0.972
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Table 6.8: Optimal solutions estimated through regression and Kriging metamodels.

s+ d+ Ĉ
+

C
+

RSM KG RSM KG RSM KG RSM KG
R1 636.42 628.47 302.86 340.44 610.45 604.96 610.04 607.28
R2 632.76 617.93 305.56 360.70 610.61 604.89 609.27 606.56
R3 636.76 622.19 304.58 361.31 610.67 604.53 610.01 607.73
R4 637.82 611.36 303.03 365.49 610.76 606.14 610.54 606.72
R5 633.63 612.53 303.29 365.21 612.20 607.31 610.95 608.91

optimal solution, replicated m = 10 times, thus obtaining the optimal observed aver-
age total cost (C).

In order to make our results less dependent on the particular seed used for CRNs
in our simulation run, we consider five macro-replicates, each using a different seed.
The whole procedure described before is repeated to fit both the regression and the
Kriging metamodel and the optimization process is performed. Table 6.8 summarizes
the optimal combinations of the input factors (s, d) found by fmincon using either

the regression or the Kriging metamodel; then, the predicted optimal cost Ĉ
+

and
the corresponding simulated values C

+
) are reported.

Aiming at comparing the two metamodelling techniques, we perform a t-test to
check whether the difference between the optimal solutions found by each strategy is
statistically significant or not. Therefore the null hypothesis we test is

H0 : µRSM − µKG = 0 . (6.2.3)

We denote the total number of macroreplicates by R (in our example, we took R = 5)
while Xi and Yi refer to the average cost C derived from Kriging (KG) and regression
(RSM) metamodels, respectively, in the i-th macroreplicate. Then, the null hypothesis
will be accepted if

|t?| ≤ tR−1;1−α/2 , (6.2.4)

where

t? =
D

s(D)
(6.2.5)

D =
1
R

R∑
i=1

(Yi −Xi) (6.2.6)

s(D) =
sD√
R

(6.2.7)

s2D =
1

R− 1

R∑
i=1

(Di −D)2 (6.2.8)
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Applying Eq. 6.2.4 to the data in Table 6.8 we conclude that the null hypothesis in
(6.2.3) is rejected, with a significance level α = 0.05. Kriging is the metamodelling
technique which performs better, giving an optimal average total cost of C

+
= 607.44

versus C
+

= 610.16 based on the regression metamodel, after averaging over the
5 macro-replicates; moreover, Kriging also provides more accurate metamodels, as
discussed before.

6.2.1 (s, S) inventory model with service level constraint

This section presents the computational experiments we performed on a possible varia-
tion on the (s, S) inventory model, where no shortage costs are considered, accounting
for possible out-of-stock through a measure of the service level, as described in Section
2.2.1.

Comparing the average total cost we obtained as one output of the simulation
runs with the corresponding output of the previous model (where shortage costs
are included) we notice that, depending on how often shortages occur and on the
magnitude of the unit shortage costs with respect to the other cost coefficients, it may
happen that — when reaching steady-state conditions, as we assume after N = 30000
periods — the influence of the shortage costs on the average total cost is reduced.

Similarly to what described in Section 6.2, we fit a (regression or Kriging) meta-
model for each output. For this study we further restrict the region of interest to the
area delimited by 675 ≤ s ≤ 1100 and 140 ≤ d ≤ 400, due to some pilot experiments
on the experimental region previously chosen which highlighted this smaller area to
be more promising.

Given the new experimental region, we construct a design of experiments using
a nested LHS: nested designs consist of two separate designs, one being a subset of
the other, which are useful when dealing with sequential evaluations. This allows to
start from a small number of design points and — if it turns out that the resulting
metamodel is not accurate enough — then we just need to evaluate an extra set of
design points, thus taking advantage of having already evaluated an initial set. For
further details refer to Husslage et al. (2005). We first made some pilot experiments
starting from a relatively small number of points (namely, 15); however, we noticed
that this design provided metamodels which were not enough accurate. So, we in-
creased the number of design points from 15 to 29, which required for only 14 more
points to simulate. The resulting design is the one we use in this experiment.

Then, we fit a regression metamodel for each output over this area. The cross-
validation procedure applied to the regression metamodel for the total cost gives the
scatterplot in Fig. 6.15, supported by relative prediction errors within the range
0.9848 ≤ ŷ1,(−i)/w1,i ≤ 1.0073, where w1 denotes the total cost and ŷ1 its estimated
value. Computing the Studentized prediction errors would suggested not to accept
the metamodel, due to one point (out of 25) which did not pass the test in 3.2.27;
nevertheless, we do accept it, since we find the relative prediction errors to be wholly
satisfactory.



(s, S) Inventory Model 139

We cross-validate the regression metamodel of the service level as well, leading to
the scatterplot in Fig. 6.16 and the corresponding relative prediction errors such that
0.9101 ≤ ŷ2,(−i)/w2,i ≤ 1.2201, w2 denoting the service level and ŷ2 its estimated
value. Even though also for this metamodel there is one point not passing the test
on Studentized prediction errors, we decide to accept it.

We show the 3-dimensional plot and the related contour plot for the two meta-
models in Figs. 6.17-6.18.

Based on the metamodels we have just fitted, we iteratively solve the following
constrained optimization problem, using MATLAB’s fmincon:

min ŷ1

s.t. ŷ2 ≤ Γ
(6.2.9)

where Γ denotes a threshold on the service level constraint, taking values from the set
{0.06, 0.10, 0.15, 0.20, 0.25}; this implies that in every iteration we select a value for Γ
from that interval and solve the resulting optimization problem. The optimal solutions
are reported in Table 6.9: more precisely, we show the optimal input combinations
(s+, d+), the corresponding estimated values for the total cost ŷ1

+ and service level
ŷ2

+, which are compared to the simulated values w+
1 and w+

2 , respectively.
As already observed in the previous section, we want to derive results that are as

much as possible independent on the seed used for generating the random numbers
streams; therefore, we take five macroreplicates and repeat the whole procedure ap-
plied so far, each time choosing a different seed. The corresponding results are shown
in rows labelled as R2-R5 in Table 6.9.

Now we fit Kriging metamodels to the total cost and service level outputs, starting
from the same design we adopted for building the regression metamodels. The Kriging
metamodel of the total cost gives relative prediction errors, based on cross-validation,
within the range 0.9685 ≤ ŷ1,(−i) ≤ 1.0059; the corresponding scatterplot is shown in
Fig. 6.19. Although the relative prediction errors do not differ so much from those
obtained on the regression metamodel, we notice that the Kriging metamodel of the
total cost passes the test on the Studentized prediction errors (see Eq. 4.2.9).

Slightly better results are shown for the Kriging metamodel of the service level,
having relative prediction errors 0.9257 ≤ ŷ2,(−i) ≤ 1.1882 and the scatterplot in Fig.
6.20. Moreover, the accuracy of this Kriging metamodel is certified through the test
on the Studentized prediction errors.

The Kriging metamodels of the total cost and service level are respectively depicted
in Figs. 6.21-6.22, together with the related contour plots.

Finally we solve the constrained optimization problem in Eq. 6.2.9, based on the
two Kriging metamodels, and using the same values for the threshold Γ we selected
before. The optimal solutions we obtain are shown in Table 6.10, together with
the predicted and simulated values of the two output functions, for each of the five
macroreplicates.

In order to compare the results obtained using the two metamodelling techniques
(see Tables 6.9-6.10), we perform the test in Eq. 6.2.4, on the null hypothesis that
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Table 6.9: Optimal Solutions based on Regression metamodels.
] Macro-replicate s+ d+ ŷ1

+ ŷ2
+ w+

1 w+
2

R1

1099.934 206.5844 813.0899 0.06 812.7126 0.0682
983.2784 278.5672 734.5998 0.1 738.8435 0.1088
898.4851 301.6565 686.083 0.15 689.8956 0.1547
838.2599 308.5755 656.9543 0.2 658.2477 0.2003
789.7343 310.4617 637.5569 0.25 635.4851 0.245

R2

1100 222.6205 817.8318 0.06 816.6398 0.0645
981.9042 277.9287 735.1668 0.1 738.8115 0.1076
897.7408 299.6517 686.6008 0.15 689.5749 0.1534
837.7156 306.7069 657.5173 0.2 658.1527 0.1988
789.173 309.0545 638.1302 0.25 637.2915 0.2477

R3

1100.076 237.5336 820.4742 0.0603 818.9041 0.065
984.3422 278.9105 736.1956 0.1 740.0932 0.1074
898.9349 301.7385 686.9218 0.15 691.7657 0.1552
838.7796 308.0945 657.6125 0.2 658.4372 0.2
790.413 309.5734 638.1718 0.25 637.4275 0.2476

R4

1100 230.8388 818.1713 0.06 816.3733 0.0647
983.42 277.8577 734.3831 0.1 739.1564 0.1089

900.0417 297.6824 685.9411 0.15 688.8292 0.1527
840.8698 303.1186 657.1359 0.2 658.5216 0.2003
793.0914 304.21 638.0407 0.25 637.2417 0.2471

R5

1102.287 191.2459 816.008 0.06 815.254 0.0701
989.6635 278.2089 741.7744 0.1 746.5912 0.1081
902.827 302.0406 691.3457 0.15 694.8458 0.1541

841.6147 309.1239 661.2936 0.2 663.1494 0.2013
792.4264 311.0787 641.3003 0.25 640.7156 0.2486
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Table 6.10: Optimal Solutions based on Kriging metamodels.
] Macro-replicate s+ d+ ŷ+

1 ŷ+
2 w+

1 w+
2

R1

1089.493 343.5903 844.3887 0.06 846.0512 0.0594
993.2601 300.6332 753.4055 0.1 752.8848 0.0998
899.4497 297.9801 687.1345 0.15 688.7964 0.1538
840.2203 294.3123 654.7266 0.2 655.2682 0.2031
789.844 301.3118 636.1993 0.25 635.6792 0.2524

R2

1052.751 390.7143 836.9825 0.06 835.7697 0.0672
981.1025 318.4281 752.3388 0.1 752.2652 0.102
920.2961 254.8813 691.4712 0.15 691.7822 0.15
860.1897 251.314 658.2201 0.2 657.7207 0.1982
795.5851 277.1283 634.1674 0.25 633.8311 0.2517

R3

1100 339.6778 849.6484 0.0603 853.6958 0.0579
979.8271 328.4263 752.2109 0.1 753.1679 0.101
888.3206 317.0681 683.9005 0.15 688.5157 0.1595
828.5839 313.7302 649.9135 0.2 654.5682 0.2067
822.2448 231.3694 638.8027 0.25 637.8209 0.2462

R4

1065.055 185.6863 773.2251 0.06 781.8669 0.0826
971.2554 329.3378 743.9569 0.1 747.8006 0.1067
889.7075 316.2066 683.6437 0.15 688.086 0.1554
837.3345 305.5393 654.7059 0.2 657.5555 0.2031
790.1892 298.3735 635.435 0.25 635.2788 0.2532

R5

1068.46 194.7875 776.4241 0.06 788.2141 0.0834
974.6031 336.1392 750.8151 0.1 754.533 0.106
890.9873 320.5723 690.1346 0.15 692.7968 0.1574
842.9643 299.5267 660.5789 0.2 661.6827 0.2042
802.2435 277.7103 638.3657 0.25 638.1493 0.2491
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the mean costs in the two methods are not significantly different from each other.
Based on this test, we conclude that the null hypothesis is rejected only for Γ = 0.10,
with a significance level of α = 0.05: in this case, the optimal solution found on the
regression metamodel gives an observed cost — averaged over the five macroreplicates
— equal to C

+
= 740.69 whereas for Kriging we have C

+
= 752.13. Since we are

interested in minimizing the total cost as well as satisfying the service level constraint,
we should also take this second output into account: so we notice that, for Γ = 0.10,
both the regression metamodel and the Kriging metamodel give an average value for
the service level which violates the constraint; the difference between the two means is
statistically significant, and this time the Kriging metamodel provides a better service
level, averaged over the five macroreplicates. This stands to reason, because the two
objectives are usually conflicting; therefore, in that case Kriging is able to keep the
service level closer to the target value, but a price must be paid for it, i.e. the cost
increases.

6.3 Robust Simulation-Optimization using RSM

After having discussed the classic simulation-optimization, we present the experi-
mental results obtained by applying the robust simulation-optimization combining
Taguchi and RSM, which we extensively discussed in Chapter 3.

It is worth to explicitly mention that our robustness approach accounts not only for
the aleatory uncertainty but also for the epistemic uncertainty: at this stage, in fact,
we assume that the parameters of the distribution of the random variables (demand
size and lead time) are not known, but they can take values within a specified interval,
according to a prior distribution; in our example we assume that both the mean of the
Poisson distribution for the lead time and the mean of the exponential distribution for
the demand size follow a Normal distribution, whose mean equals the ‘base’ value used
in classic optimization whereas the variance expresses the variability of the parameter
over the specified interval. Nevertheless, all these assumptions are introduced without
loss of generality, since the proposed methodology remains applicable even if different
probability distributions are taken into account.

We apply the proposed method starting from a design obtained by crossing two
LHS designs over the control and noise factors region of interest, respectively: the
design involving the control variables (s, d) is a two-dimensional maximin LHS, while
we sample the noise factors (λD, λL) still following a LHS, but taking values from a
Normal distribution truncated between µi−2σi and µi+ 2σi, where µi and σi denote
the mean and standard deviation of the i-th noise factor (either the demand size or
the lead time).
We choose nd = 25 and ne = 20, implying that we need to run 500 input combina-
tions, each replicated m = 10 times. As discussed in Section 6.1, we use Common
Random Numbers (CRN) when simulating replication r (r = 1, . . . ,m) of the nd com-
binations of the decision variables, to improve the accuracy of the estimated effects
of these decision variables. However, we do not apply CRN when simulating the ne
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combinations of the environmental variables; in fact, we shall estimate the epistemic
variability assuming independent observations.

First we fit a regression metamodel for the total cost over the 4-dimensional input
space, according to Eq. 3.2.8. Notice that, replications being available, we build the
matrix of explanatory variables X based on all possible scenarios (i.e. combinations
of control and noise factors), each replicated m times; this implies that each input
combination is repeated m times in the matrix X, thus increasing its number of rows
from n = nd · ne to

N =
n∑
i=1

mi = mnd · ne , (6.3.1)

with mi identical rows; in particular, we keep the number of replications fixed so
mi = m for all i.

The cross-validation of the resulting metamodel produces the scatterplot in Fig.
6.23 and relative prediction errors 0.9276 ≤ ŷ ≤ 1.0844.

Accepting the metamodel as valid, we use the estimated regression coefficients to
derive the metamodels for the mean and standard deviation of the total cost, based
on Eqs. 3.2.15-3.2.16. Notice that µe = [λD,nom, λL,nom] and Ωe = diag(σ2

λD
, σ2
λL

),
because we assume that the two environmental variables (λD and λL) are independent.
The two metamodels, together with the corresponding contour plots, are shown in
Figs. 6.24-6.25.



144 Chapter 6

(a) 3-D plot

600

600

650

650

65
0

650

700

700

70
0

700

750 750

75
0

750

750

800

80
0

800

85
0

85
0

850

90
0

90
0

900

95
0

950

950

10
00

1000

s

Q

RSM Contour plot for the Avg Total Cost

500 600 700 800 900 1000 1100 1200
50

100

150

200

250

300

350

400

450

500

(b) Contour plot

Figure 6.7: Regression metamodel based on data in Table 6.1, removing column d = 1
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Figure 6.8: Scatterplot of regression metamodel based on data in Table 6.1, removing
column d = 1
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Figure 6.9: Kriging metamodel based on data in Table 6.1, removing column d = 1
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Figure 6.10: Scatterplot of Kriging metamodel based on data in Table 6.1, removing
column d = 1
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Figure 6.11: Regression metamodel based on LHS using 25 observations
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Figure 6.12: Scatterplot of regression metamodel for LHS using 25 observations
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Figure 6.13: Kriging metamodel based on LHS using 25 observations
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Figure 6.14: Scatterplot of Kriging metamodel for LHS using 25 observations
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Figure 6.15: Scatterplot of regression metamodel for the total cost
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Figure 6.16: Scatterplot of regression metamodel for the service level
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Figure 6.17: Regression metamodel for the total cost
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Figure 6.18: Regression metamodel for the service level
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Figure 6.19: Scatterplot of Kriging metamodel for the total cost
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Figure 6.20: Scatterplot of Kriging metamodel for the service level
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Figure 6.21: Kriging metamodel for the total cost
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Figure 6.22: Kriging metamodel for the service level
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Figure 6.23: Scatterplot of regression metamodel for the total cost
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Figure 6.24: Regression metamodel for the expected total cost
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The two regression metamodels are then used to solve the following constrained
optimization problem:

min E(C)
s.t. s(C) ≤ T

(6.3.2)

The threshold T is selected in such a way that feasible solutions always exist, i.e.
we will never face an infeasible optimization problem; in particular we choose T ∈
(30, 70). Moving the threshold in this range and each time solving the resulting
optimization problem allow us to derive the estimated Pareto frontier, depicted in
Fig. 6.26.

In order to study the variability of the optimal solutions (say (s+, d+)) correspond-
ing to the estimated Pareto frontier in Fig. 6.26, we apply distribution-free bootstrap
to the output of the simulation model in the following way:

i. Given the 3-dimensional matrix C = (Cijr), we resample (with replacement) the
ne combinations of noise factors, given the control factor combination (si, di)
and the r-th replication.

ii. Then, we apply the same sampling across all combinations of control factors
(s, d) and all m replications.

iii. We repeat the bootstrap procedure B times; say B = 100.

Therefore, for each b = 1, . . . , B, we obtain one matrix of bootstrapped costs, C∗b =
(C∗bijr), to which we can apply the same steps we performed on the original matrix of
simulated costs, C. So, we first fit B regression metamodels of the bootstrapped cost
matrices, always including replicated scenarios, and then we derive the metamodels
for the expected mean and standard deviation. Finally, similarly to what we did in
the EOQ example when using distribution-free bootstrap, we evaluate each optimal
solution (s+, d+) belonging to the original (i.e., not bootstrapped) Pareto frontier
on each pair b of bootstrapped metamodels, E(C∗b), s(C∗b). We show the results
obtained for two specific values of the threshold, namely T = 37 and T = 67, in
Fig. 6.27. On the same figure, we also show the 90% confidence region, computed
on the basis of the bootstrapped estimates of the optimal solutions; the normality
assumption has been tested and accepted, as confirmed by the chi-square plot in
Fig. 6.28.

It is noticeable that the optimal solution computed on the original model is not
fully covered by the ‘dotted area’ identified by the bootstrapped solutions; this is
especially evident in 6.27(a), which correspond the a smaller threshold T on the
standard deviation. This might imply that the solution estimated through the original
regression model is not so robust to possible variations in the environmental factors —
then reflected by variations of the output, which are emulated through distribution-
free bootstrap; this is even more evident for stricter constraints, i.e. when we ask for
the standard deviation to be smaller.
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6.4 Robust Simulation-Optimization using Kriging

Using the same assumptions we made in the previous section, we solve a robust
simulation-optimization problem according to the methodology defined in Chapter
4. Referring to Fig. 4.1, we discuss results for the first approach we propose: it
allows to fit the Kriging metamodels for the mean and standard deviation of the
total cost directly from simulated data; whereas the other approach uses data from
the simulation runs in a different way, that is to fit a single Kriging metamodel
for the average total cost, then two Kriging metamodels are obtained for the mean
and standard deviation of the output of interest, using predictions over the first
metamodel.

We select the same design used in Section 6.3. Then we compute the expected
value of the total cost as follows:

Ci =
1

nem

ne∑
j=1

m∑
r=1

Cijr , (6.4.1)

where Cijr denotes the simulated total cost, corresponding to the i-th control factor
combination, j-th noise factor combination and r-th replication.
Since our final goal is to search for the optimal combination of the decision variables
which minimizes the expected total cost, also keeping the standard deviation below
a given threshold, we should account for both types of uncertainty; i.e., the total
uncertainty should remain below a given threshold. This total uncertainty we estimate
through

s2(Ci) =
1

nem− 1

ne∑
j=1

m∑
r=1

(
Cijr − Ci

)2

. (6.4.2)

.
Based on these data, we fit a Kriging metamodels for the expected total cost and

a Kriging metamodel for its standard deviation. We validate each of the metamodels
using cross-validation: the resulting scatterplots are shown in Figs. 6.29-6.30, respec-
tively; we also computed the relative prediction errors, obtaining 0.9925 ≤ ŷ1 ≤ 1.0118
for the expected cost and 0.8616 ≤ ŷ2 ≤ 1.2324 for the standard deviation of the cost,
which allow us to accept both the metamodels as valid.

A 3-dimensional plot of the two metamodels, together with its contour plot, is
reported in Figs. 6.31-6.32.

Based on the Kriging metamodels we have just fitted and validated, we solve
the constrained optimization problem as formulated in Eq. 6.3.2; adopting the same
choice for the threshold values, we estimate the Pareto frontier, which is plotted in
Fig. 6.33.

Again we apply distribution-free bootstrap to the output of the simulation model
as described in Section 6.3; then we compute the mean and standard deviation of the
bootstrapped cost matrices, based on Eqs. 6.4.1-6.4.2. Fitting the Kriging metamod-
els over these bootstrapped data gives Fig. 6.34.
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Using this set of B pairs of bootstrapped metamodels, we compute the predicted
mean and standard deviation for each optimal solution (s+, d+) belonging to the
original Pareto, obtaining E(C∗b), s(C∗b). We pick the same values for the threshold
as we did in Section 6.3, to show the corresponding results in Fig. 6.35, where the 90%
confidence region derived from the B bootstrapped optimal solutions is also plotted.
The hypothesis of bivariate normality of the bootstrapped output is accepted, based
on the results from the test described in Sect. 5.3 which results in the chi-square plot
in Fig. 6.36.
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Figure 6.25: Regression metamodel for the standard deviation of the total cost
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Figure 6.26: Estimated Pareto frontier based on regression metamodels
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Figure 6.27: Bootstrapped estimations of the optimal solution and 90% confidence
region based on regression metamodels of mean cost and standard deviation, for
T = 37 (above) and T = 67 (below).
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Figure 6.28: Chi-square plot of the bootstrapped estimates of mean cost and standard
deviation, based on regression metamodels, for T = 37 (above) and T = 67 (below).
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Figure 6.30: Scatterplot of Kriging metamodel for the standard deviation of the total
cost
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Figure 6.31: Kriging metamodel for the expected total cost
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Figure 6.32: Kriging metamodel for the standard deviation of the total cost
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Figure 6.33: Estimated Pareto frontier based on Kriging metamodels
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Figure 6.34: Bootstrapped Kriging metamodels
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Figure 6.35: Bootstrapped estimations of the optimal solution and 90% confidence
region, based on Kriging metamodels, for T = 37 (above) and T = 67 (below) —
Approach 1.
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Figure 6.36: Chi-square plot of the bootstrapped estimates of mean cost and standard
deviation, based on Kriging metamodels, for T = 37 (above) and T = 67 (below).
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Chapter 7

Discussion and Conclusions

The research work that has led to the present dissertation originated from the study
and analysis of metamodels; more precisely, we focussed our attention on analyz-
ing Kriging metamodels, integrating them within an optimization framework. Then,
the collaboration with Prof. Jack P.C. Kleijnen, from the CentER Graduate School,
Tilburg University, has helped us in sketching a possible outline for the Ph.D. thesis.
Such a work started with a wide study of the literature dealing with optimization
methods involving some factors affected by uncertainty, usually referred to as robust
optimization methods. During our study of the state-of-the-art on the topic, we no-
tice that — despite the interest for this research area — there was a lack of methods
to deal with robust optimization applied to simulated systems in general and, more
specifically, with robust optimization supported by a metamodelling technique, when
simulation asks for high computational costs. Therefore, we decided to follow this
path, aiming to (at least partially) bridging this gap.

As a preliminary study, we focussed our attention on the approach proposed by
Myers and Montgomery, to solve a robust optimization problem, through the use
of regression metamodels, to approximate a real (i.e. not simulated) system. Then,
their method served as a useful starting point for our research to go on, first of all
by extending the robust procedure outlined by Myers and Montgomery to computer
simulated systems and generalizing it through overcoming some restrictive assump-
tions: for instance, Myers and Montgomery identify only two levels for each factor,
whereas we conduct a more refined analysis, allowing the input factor to take real
values within a given range.

After some experiments on the robust methodology based on regression metamod-
els, we devoted most of our attention to study, design and implementing a novel ap-
proach to robust optimization using an alternative metamodelling technique, namely
Kriging.

The approach proposed in this dissertation has been applied to two examples, that
we chose as representative of both deterministic and stochastic simulation models:
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1. The first application is based on the Economic Order Quantity (EOQ) model, a
relatively simple model describing a deterministic system where we artificially
introduce some uncertainty on the demand rate so to look for a robust solution
w.r.t. possible variations in the parameter values.

2. The second example is based on the (s, S) inventory model, which is also well
known in the management literature: it represents a stochastic system where the
uncertainty is related to both some random variables characterizing the system
and to the parameters defining the probability distribution of such variables.

We point out that, in general, the sources of uncertainty affecting a stochastic
simulation model can be identified as belonging to two main classes: the aleatory
uncertainty is inherent into the simulation model so being inescapable and it cannot
be reduced without redesigning the real system (e.g., finding more reliable suppliers
in inventory control, or more reliable machines in production control); the epistemic
uncertainty is caused by the lack of information on the uncertain factors, so it can be
reduced by collecting more information on those inputs (e.g., uncertain demand rates
and lead time in inventory management). Simulation analysts may reduce the uncer-
tainties in their estimates of the aleatory and epistemic uncertainty through ‘bigger’
sample sizes; i.e., more simulation runs or — in case of steady-state simulations —
longer simulation runs. The robust optimization methodology that has been proposed
in this Ph.D. thesis aims at accounting for both sources of uncertainty affecting the
system. Moreover, it can be useful to further analyze the influence each uncertain
factor has on the outputs of the system under study and evaluate to what extent they
impact on the final optimal solution and on the variability of the outputs of interest.

The major contributions of the dissertation concerns the following aspects:

• Thorough study of possible source of uncertainty that might affect simulated
systems and systematic analysis of the methodologies to solve robust optimiza-
tion problems accounting for such uncertainty and for the influence it has on
the outputs of the system we want to optimize.

• Analysis and integration of Kriging metamodels within a robust simulation-
optimization framework for both deterministic and stochastic simulation mod-
els, including validation procedures of the approximation models which aim at
ensuring an acceptable degree of accuracy.

• Comparison of the proposed approach with methods based on regression meta-
models, derived from some techniques already discussed in the literature, but
then extended and generalized.

• Wide and interdisciplinary applicability of the proposed methodology in the
engineering and management contexts.

The dissertation has been divided into two parts: the first one aiming at describing
the methodology proposed, moving from the state-of-the-art in the area of simulation-
optimization and robust method to tackle uncertainty; the second one is devoted to
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illustrate the results of the framework previously described, with applications to both
deterministic and stochastic simulation models.
As far as the methodological part is concerned, some further remarks should be men-
tioned:

1. Kleijnen (2009) enlights Kriging metamodels to be suitable for approximating
the input/output relationship of a (black-box) stochastic simulated system, the
final goal being to solve an optimization problem replacing expensive simulation
runs by cheap metamodelling predictions. The results of the present disserta-
tion assess that Kriging is a promising approximation technique also in robust
simulation-optimization. Moreover, it is also important to highlight that fitting
a Kriging metamodel does not require any specific assumption on the output
distribution (e.g. normality), as it is the case for regression metamodels, thus
providing more flexibility.

2. Based on the results obtained on the two examples, discussed in Chapters 5-6,
the evaluation of Kriging performance is twofold:

(a) From the accuracy point of view, we notice that the validation procedure
might reveal low accuracy (eventually failing at all) for metamodels either
based on a small number of data samples or fitted over a wide region.
Apart from that, the experimental results on (s, S) confirm the ability for
Kriging metamodels to provide better approximation of highly nonlinear
functions than regression models, as discussed in Sec. 6.2.

(b) As for the optimization results, we notice that Kriging does not always
outperform regression metamodels, depending on the region of interest and
the function to be approximated. Notwithstanding this, Kriging appears
to give promising results in the robust optimization process we propose; in
fact, referring to the (s, S) inventory model, the estimated Pareto frontier
based on Kriging is definitely non-dominated by the Pareto frontier esti-
mated from regression metamodels. Moreover, Kriging seems to provide
more robust solutions compared to those derived on the regression meta-
models, as it emerges through our bootstrap analysis. A final comparison
with the optimal solutions found by a well-known commercial software for
simulation-optimization (namely, OptQuest) gives encouraging results: we
check whether the optimal solutions estimated through Kriging are signif-
icantly different from those provided by OptQuest, by performing a t-test
for the null hypothesis

H0 : µOptQuest − µKG = 0 , (7.0.1)

similarly to what discussed in Sect. 6.2. The results of the test suggest
to accept the null hypothesis with a significance level α = 0.05. More-
over, we compute the relative errors on the optimal costs, noticing that
they are rather small, being always less than 2%. With respect to this
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subject, we point out that such approach has the property of requiring
a relatively small number of simulation runs, compared with more clas-
sical simulation-optimization approaches which do not use metamodels:
on one hand embedding metamodelling techniques has the advantage of
saving computational time and resources; on the other hand, the use of
surrogates — instead of the original simulation model — can provide less
accurate results; therefore, a balance between these two aspects must be
achieved.

Further analyses included more rigorous comparisons, through testing how sig-
nificant is the difference in the optimal solutions between the methods discussed:
it turned out that in some cases the results provided by the two approaches are
not significantly different, but — when the difference becomes significant —
Kriging usually provides better solutions.

3. In this dissertation we discuss some techniques to analyze and compare the
robust optimization schemes that have been proposed (see Chapters 5-6), in-
cluding a method to identify some confidence regions for the results obtained
from optimizing the bootstrapped data. The confidence regions provides an idea
of the variability of the outputs of each optimization process presented in our
examples. More specifically, we are interested in the joint confidence region for
the mean and the variance of a distribution, the outputs under study being the
mean and the variance of the cost. In the proposed approach, following Kleijnen
and Gaury (2003), we apply a method to derive a joint confidence region for
a bivariate normal distribution (the outputs of interest in that paper were the
work-in-progress (WIP) and a fill-rate measure); this may sometimes require
to transform the variables (e.g., through a power transformation) in order to
approach normality. An alternative approach might be the one proposed by
Mandel and Betensky (2008), which does not necessarily require normality of
data, and allows the computation of joint confidence interval for m parameters,
using bootstrapping.

4. It is important to notice that the validation procedure highly depends on the
Design of Experiments we use to fit the metamodel. In our computational exper-
iments, we consider a static design, selected a priori over the region of interest
and never updated while the optimization procedure goes on. An exception is
represented by the nested LHS design, which we also adopted, requiring to add
some new points to an initial design, in case it did not provide enough accurate
metamodels; however, this leaves the optimization process aside anyhow. Other
techniques are also proposed in the literature, which can accept to start with
non-valid metamodels, whose quality and accuracy can be iteratively improved
during the optimization process, by dynamically adding new sample points to
the design (see Kleijnen et al. (2008), and Dellino et al. (2009)). On the basis
of these notes, we might consider the methodology proposed in this dissertation
as a starting point to be integrated in such frameworks.
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5. In this work we focus only on continuous optimization, also relaxing some con-
straints on the decision variables which usually lead to tackle such problems
within the area of discrete (or, more in general, mixed integer) optimization.
Of course, a first — albeit rough — way to derive integer solutions would be to
consider the real-valued optimal solution we obtained and then round it to the
closer integer value; even though this is not so rigorous, sometimes it can also
give good solutions in practical applications. Nevertheless, we should mention
that the proposed approach can be easily extended to deal with integer con-
straints, provided that the DoE is made of only integer (or discrete) values for
the corresponding variables; see Kleijnen et al. (2008), and Kleijnen (2008). In
fact, it is important — in a simulation-optimization framework — to simulate
scenarios which always guarantee input feasibility, to fit a metamodel over the
corresponding I/O data. Then, the approach remains applicable once the Non-
Linear Programming (NLP) solver (e.g. fmincon) is replaced by an appropriate
Mixed-Integer NLP (MINLP) solver, which must be able to optimize black-box
functions or metamodels; see, for instance, the IBM projects BONMIN (Basic
Open-Source Nonlinear Mixed Integer programming), documented in Bonami
and Lee (2007), and COUENNE (Convex Over and Under Envelopes for Non-
linear Estimation), discussed in details in Belotti et al. (2008).

6. Combining the last two remarks, we can develop a more complex and flexible
framework, which enables to solve MINLP problems, taking advantage also of
strategies to dynamically update the metamodels, this process being ruled both
by metamodels’ accuracy and through identifying promising regions during the
optimization procedure.

Regarding the case studies and the related problem formulations, it is worth men-
tioning the following aspects as further steps to improve the current research also
from this point of view:

1. Use of the Coefficient of Variation (CV) for the constraint on the variability of
the (main) objective function (see del Castillo, 2007); it is defined (only for non-
zero mean) as CV = σ/µ and it provides a normalized measure of dispersion of
a probability distribution.

2. Adoption of different metrics to measure the service level, not necessarily alter-
native to each other, so that we can study, for instance, the system behaviour
over distinct time periods; see Winston and Goldberg (2004).

3. Accounting for different distributions for the demand size and for the lead times;
see (e.g.) Gallego et al. (2007).

4. Inclusion of some other constraints on input variables and/or on the output
functions; e.g. inventory space constraints, number of shortage periods in the
planning horizon.
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5. Analysis of other sources of (both aleatory and epistemic) uncertainty, such as
those affecting setup times and inventory levels, frequently appearing in real
applications.
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