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Abstract. We consider DNA implementations of databases for digital signals with retrieval and mining capabilities. 
Digital signals are encoded in DNA sequences and retrieved through annealing between query DNA primers and data 
carrying DNA target sequences. The hybridization between query and target can be non-specific containing multiple 
mismatches thus implementing similarity-based searches. In this paper we examine theoretically and by simulation 
the efficiency of such a system by estimating the concentrations of query-target duplex formations at equilibrium. A 
coupled kinetic model is used to estimate the concentrations. We offer a derivation that results in an equation that is 
guaranteed to have a solution and can be easily and accurately solved computationally with bi-section root-finding 
methods. Finally, we also provide an approximate solution at dilute query concentrations that results in a closed form 
expression. This expression is used to improve the speed of the bi-section algorithm and also to find a closed form 
expression for the specificity ratios.   
 

1 Introduction 

Baum [1] first proposed building a DNA database capable of storing and retrieving digital information. He demon-
strated that such database would allow data (in contrast to conventional address) based searches by exploiting the 
annealing property of DNA and utilizing common laboratory techniques for database access and management. 

DNA offers significant advantages when compared to other media for storing digital signals or data, in general. 
The DNA molecule, especially in its double stranded form, is very stable, compact, and inexpensive. Polymerase 
Chain Reaction (PCR) is an economical and efficient way to replicate databases. Querying the database can be im-
plemented with a plethora of techniques. In digital databases the query time increases proportionally to the size of 
the database. However, in DNA databases when annealing is used as a search mechanism, the querying time is inde-
pendent of the database size when the target molecules have equal concentrations. 

As with any DNA computing application, the first step towards designing a database and retrieval mechanism 
is to find reliable methods for encoding digital signals into DNA sequences, also known as the codeword design 
problem. In our problem, the encoding has to be such that it enables content-based searches and at the same time 
limits the possibility of errors during retrieval. Furthermore, in the case of digital signals where perfect matches are 
almost impossible due to noise or the nature of the signals, the encoding scheme needs to allow for and account for 
similarity based retrieval. To accomplish this we introduced a new constraint, the Noise Tolerance Constraint (NTC) 
[9, 11]. 

The second step is to design the structure of the storage elements each of which has unique properties and 
characteristics. DNA databases consist of a collection of elements. Usually each element has a unique address (or 
index) block, which uniquely identifies (and therefore enables the retrieval of) a usually larger information-carrying 
block (data block).  

The third step is to decide on the host environment of the database. It can be a test tube, a polymer, or even a 
living organism. Each host offers unique capabilities but at the same time imposes constraints on the information 
capacity, database longevity, and ease of use. Finally, input and output methods need to be chosen. Some input (in-
formation storage) and output (information retrieval) methods are faster than others.  

The steps mentioned above are not independent. For example, the choice of host and database element has a 
large impact on the codeword design problem and the capabilities of the database.  

This paper begins with a brief description of the overall system and its structure (section 2). Subsequently in 
section 3 we provide the mathematical framework that describes the behavior of the system and present a computa-
tional bi-section method, and an approximate closed form solution that is valid for low query concentrations for es-
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timating the concentrations of query-target duplex formations at equilibrium. In section 4 we offer simulation results 
and compare the above two methods at various concentrations. Finally in section 5 we conclude this paper and pro-
vide some directions for future improvement. 

2 System Description 

The problem can be described as follows. Consider a set of digital signals V, with elements the vectors , each 
entry of each is a k it integer. This set V is hereafter termed as digital database. Assume also a vector q  that con-
tains ql , −  integers, hereafter termed as digital query. The problem at hand is to find out whether q  can be 
found in V. Traditionally a matching criterion must be defined first that describes the similarity between the query 
and the digital signal at the location under examination [

1l × iv
− b

k bit

3]. Overall the goal is to find (a) a yes/no answer whether a 
match has been found (in essence the criterion is minimized and is lower than a user supplied threshold) and (b) the 
locations and the vector identity of such matches. 

There are many criteria that can be used for matching and each of them offers distinct characteristics in terms 
of performance and computational cost. Similarly there are different ways of searching within the database. Tradi-
tional correlation and convolution techniques can be used, although the computational cost is an important consid-
eration for such choice. The complexity of the problem in the best case scales linearly with the size of V, but in most 
implementations the complexity is a polynomial function of the size of V. Although the complexity of the matching 
operation is low, it is usually the number of such operations dictated by the size of V that renders the problem diffi-
cult to implement for practical applications.  

2.1 DNA Equivalent System 

Our research is centered on providing a DNA-based alternative to the above problem. It is the compact nature of the 
DNA molecule that renders it an attractive storage medium. Furthermore, the chemical structure of the DNA sup-
plies us with an extraordinary tool that allows for the medium to be part of the computational platform as well, since 
it allows us to perform data searches using the annealing property of DNA. 

A double helix of DNA (Deoxyribo-Nucleic Acid) is made from two single strands of DNA, each of which is a 
chain of nucleotides A, G, T, and C.  Nucleotides can be joined together in a linear chain to form a single strand of 
DNA. A short single strand of DNA consisting of up to 100 or so nucleotides is called an oligonucleotide or oligo 
and is also characterized by polarity, originating from the two distinct ends, the 5’ end and the 3’ end. Each base in 
DNA has its unique Watson-Crick complement, which is formed by replacing every A with a T and vice versa, and 
every G with a C and vice versa. Every oligonucleotide has a complementary sequence with opposite polarity; for 
example, the complementary sequence of 5´-ATG-3´ is 3´-TAC-5´. If two complementary sequences meet in a solu-
tion under appropriate conditions, they will attract each other and form a double stranded helical structure. This 
process is called hybridization. Specific hybridization, refers to cases where the two single strands are perfectly 
complementary at every position and the double-stranded molecule that is formed is perfect, while non-specific hy-
bridization, corresponds to cases with mismatched base pairs.   

The first step towards defining a DNA equivalent system to a digital system is to map the digital information 
into DNA. The problem is also known as the codeword or library or word design problem. In our case the problem 
translates into finding DNA sequences (words) , 1...ix i N= , of length  bases, capable of encoding , l N k − bit in-
tegers.  

In most DNA computing applications only perfect hybridizations are acceptable. In our case, we want to de-
sign the DNA codewords such that the melting temperature between DNA words is inversely proportional to the 
absolute difference between the encoded signal values. To accomplish this, we have introduced a new constraint, the 
Noise (or inexact match) Tolerance Constraint (NTC) [9, 10, 11]. This constraint and others are needed to ensure 
that only wanted duplexes will be formed. In other words we want to minimize the possibility of formation of un-
wanted duplexes and maximize the possibility of wanted ones. In a laboratory setting this translates to minimizing 
the concentration of unwanted hybridizations while maximizing the concentration of wanted hybridizations.  

For simplicity let us assume that DNA sequences inside a database are constructed as in Fig. 1, although many 
other different structures can be found [13]. For clarity we term these structures database elements. For each data-
base element , with concentration , the double-lined gray part is the index that identifies the data, which ap-
pear on the right in solid black lines. Data are concatenations of DNA words. The index part of different elements 

jS jC
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should be very dissimilar. Assume that we have M digital signals and hence M database elements. For simplicity lets 
assume that each database element is  bases long where L IN+ IN  is the index length and  is the data length.  L

The system can be described with the following parameters and inputs: 
(a) M database elements, of concentration jC  and sequence information js  of length L (in the analysis that 

follows we ignore the index without loss of generality), 1...j M= . 
(b) A query Q , shown in Fig. 1 as solid gray line, of concentration 

o
Q  and sequence information Qs  of 

length q < L. 

(c) Reaction parameters: temperature T  and salt concentration Na++  

To ease our analysis we introduce the notion of fragments. A fragment j
ipF  represents the sequence informa-

tion of a database element  at location i  of length  with concentration j p j
ipF . It is clear that j

ip jF s⊆ . Further-

more, it is apparent that in our case the initial concentration of each fragment is j
ip jo

F C= . 

Subsequently we can model the query fragment complexes as j
ipQF . Such complexes are illustrated in Fig. 1 in 

various locations. The complexes can have rather elaborate geometric structures and predicting such formations is a 
well-studied field [2, 8, 16]. Without loss of generality, to ease our analysis and reduce the complexity we will as-
sume that (i) , (ii) complexes will have only internal mismatches and no dangling ends, and (iii) the number of 

complexes is limited to . The goal of this article is to estimate 

p q=

TN j
ipQF  for a given set of inputs and parameters. 

 

3 Modeling the hybridization reactions 

The problem of estimating the concentrations j
ipQF  can be rather complicated. The following reaction equation 

describes the formation of those complexes 
, ,f

r

Kj j
ip ipK

Q F QF i j+ ∀ , p  . (1) 

The parameters fK  and rK  are called the forward and reverse rate constants. These rates depend on environmental 
parameters and laboratory settings. They are usually difficult to estimate since they require a plethora of laboratory 
experiments and are not universal. These disadvantages make them unattractive, and usually an equilibrium analysis 
that does not model the dynamic behavior is sought after. 

3.1 Equilibrium Solution 

f
eq

r

K
Under an equilibrium assumption, K

K
= , and the differential equations that describe the mass action equations 

that satisfy equation (1) become polynomial equations. For simplicity we will drop the “ ” from eq eqK  and since 
 equation p q= (1) becomes  

, ,f

r

Kj j
i iK

Q F QF i j+ ∀ . (2) 

In equilibrium  

exp
j

j i
i

G
K

R T
⎛ ⎞Δ

= −⎜ ⎟⋅⎝ ⎠
, (3) 

where  is the Gibbs free energy,  is the Boltzman constant, and T  is the temperature in Kelvin. There have 
been many proposals on estimating concentrations at equilibrium [

GΔ R
4, 5, 6, 7, 15].  The Gibbs free energy for DNA 

complexes can be estimated using nearest neighbor thermodynamics parameters, which are available in the literature 
[2, 8]. We should note that the equilibrium constants depend on the reaction temperature and salt concentration and 
hence they have to be readjusted for each experiment. 

Also, 
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j

ij
i j

i

QF
K

Q F
=

⋅
. (4) 

The conservation equation on the query is given by 

,
j

io free bound i j
Q Q Q Q QF= + = +∑ , (5) 

where the sum is over  terms which is the number of complexes in the system. TN
The parameter α  is defined as the percentage of bound query strands and is given by 

,

,

j
ii jo

j
io i j

QFQ Q
Q Q QF

α
−

= =
+

∑
∑

. (6) 

After substituting equation (4) into (6) we get 

,

,
1

j j
i ii j

j j
i ii j

K F

K F
α

⋅
=

+ ⋅

∑
∑

. (7) 

Utilizing the conservation equations for each species we have 
j j j j j j

i i i i i i io

j

o
F QF F F K Q F F+ = ⇒ + = , (8) 

where j
i o

F  is the initial concentration of each fragment. Note that in our case j
i jo

F C= . 

Solving equation (8) for j
iF , and utilizing equation (6) we obtain 

, ,
1 (1 )

j
ij o

i j
i o

F
F i j

K Q α
=

+ −
∀ . (9) 

According to [5] the system of equations (7) and (9) can be solved iteratively and provide a solution for the 
sought after concentrations j

iQF . 
Alternatively, a solution to this system of equations can be obtained as follows. Equation (9) can be rewritten 

as 

1

j
ij o

i j
i

F
F

K Q
=

+
. (10) 

In this case we can write equation (5) as 

, 11

j j j
i i io

jo
j i ii

j
i

o
K F Q F Q

Q Q Q
K Q Q

K

⋅ ⋅ ⋅
= + = +

+ ⋅ +
∑ ∑ . (11) 

Setting  
, [0,

o
q Q Q q= ∈ 1] , (12) 

and rearranging the terms in (11) we get: 

( )
( )( ),

1 0
1

j
i oo

j
j i io

F Q q
q

Q K q

⋅
+ − =

+
∑ . (13) 

Hence we are looking for the solution [0,1]sq ∈  that satisfies the above equation. 
If we set,  

( )
( )( ),

( ) 1
1

j
i oo

j
j i io

F Q q
f q

Q K q

⋅
=

+
∑ q+ − , (14) 

the problem is equivalent to finding the roots of . ( )f q
With fundamental calculus we obtain that (i) (0) 1 0f = − < , (ii) , and (iii) . Therefore accord-

ing to the intermediate value theorem there exists a unique solution 
(1) 0f >

[0,1]sq
'( ) 0f q >

∈  such that . Finding the solu-
tion analytically is infeasible since the equation 

( )sf q = 0
( ) 0sf q =  leads to a ( 1)TN + -th order polynomial.  
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Comparing equations (6) and (12) we see that 
1q α= − . (15) 

3.2 Computational solution 

The unique characteristics of equation (13) make it an ideal candidate for a computational bi-section method [14] to 
find an approximate solution , where aBa q b≤ ≤ b<  are given boundaries. Such method can guarantee that Bq  is 
within ε  from sq , where 1( ) 2nb aε +≤ −  and n  is the number of iterations. The concentration 

B B o
Q q Q= ⋅ , (16) 

will henceforth correspond to the solution by bi-section of equation (13). Since bi-section methods are known to be 
problematic when roots lie close to zero (as in our case), instead of finding the roots of (13) we find the solution of 

, where , which avoids numerical precision errors and leads to better conver-
gence. 

( ) ( )log ( ) log 0f q W W+ − = 1W ?

3.3 Approximate solution when query concentration is diluted 

In the following for simplicity, we will assume that j
i jo

F C C= =  and
o

C Q ρ= , which results in simplified and 

more tractable equations. Similar derivations can be made without the above assumption. Using the above assump-
tions we can rewrite equation (13) as: 

( )( )

( ) ( )

,

1
1

h q g q

j i j
io

q q
Q K qρ

−
=

+
∑ , (17) 

or 

( )( ),

1( ) ( ) ( )
1j i j

io

q qf q
Q K q ρ ρ

= + − =
+

∑ g q h q− . (18) 

We are interested in roots of equation (18). 
In Fig. 2 we see a graphical illustration of equation (17). The gray heavy line represents  the left part of 

equation 
( )h q
q(17). The black curve, illustrates each term inside the sum, which is asymptotic to 1 as . The black 

heavy curve represents the whole sum 
1→

( )g q , which asymptotically reaches . When  the quantity TN 0q →

( )1 j
io

Q K  of each term inside the sum, is much larger than , thus can be approximated as a linear function close 

to zero. For linearity to hold we have to assume that 

q

1ρ ? , or equivalently 
o

Q C= , thus the query concentration 
is in dilute. With that observation we can approximate each term in the sum as 

( )( )1
j

i oj
io

q q K Q
Q K q

≈ ⋅ ⋅
+

. (19) 

Then equation (17) becomes: 

,

1
,

j j
i o oj i j i

q q K Q q Q K
ρ
−

≈ ⋅ ⋅ = ⋅ ⋅∑ i∑ , (20) 

and subsequently we can solve for q  to obtain 

,

1
1a j

io j i

q
Q Kρ

≈
+ ⋅ ⋅∑

, (21) 

or  

,
1

o
a j

io j i

Q
Q

Q Kρ
≈

+ ⋅ ⋅∑
. (22) 

We can see that equation (21) turns out to be an independent function of ρ  if 
o

C Q ρ= . The equation then 

simplifies to . This can be further simplified to ( 1

,
1 j

a j i
q C K

−
≈ + ⋅∑ )i
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1
a

T

q
C N K

≈
⋅ ⋅

, (23) 

or 
1

a
T

Q
N Kρ

≈
⋅ ⋅

, (24) 

where  and TN K  are the number of complexes and the mean value of equilibrium constants respectively. 

3.4 Finding concentrations j
iQF  and query selectivities 

From equations (4) and (10) we have: 
 

1 1

j j j
i i ij j o o

i i j jo
i i

F F K Q
QF F

K Q K Q

⋅ ⋅
= − =

+ ⋅ + ⋅
. (25) 

The concentrations therefore can be found by substituting BQ  from equation (16) or aQ  from equation (24) 
in the above equation. 

After finding the concentrations the selectivity percentages can be found according to 

,

j
ij

i j
ii j

QF
SA

QF
=
∑

. (26) 

This dimensionless expression can be seen as the percentage of the complex j
iQF  within all the bounded 

complexes. In our case equation (26) can be termed as query selectivity or query specificity, which is commonly 
found in the literature of database design. 

3.5 Finding systemK  

systemK  corresponds to the equilibrium constant of a lumped system where the individual targets are lumped and 

treated as a single species A. The concentration of A is essentially equivalent to the sum of j
iF . 

f

r

K

K
Q A QA+  (27) 

Our goal is to find the equilibrium constant of the above reaction. 
Using conservation equations we have the following system of equations: 

 
o

o

system

Q Q QA

A A QA

QA K Q A

= +

= +

= ⋅ ⋅

 (28) 

The solution of the above system of equations is 

1
o

systemo
system

A
Q Q K Q

K Q
= + ⋅ ⋅

+ ⋅
. (29) 

Solving for systemK  results in: 

2
o

system

o o

Q Q
K

Q Q A Q Q

−
=

+ ⋅ − ⋅
. (30) 

In order to find systemK  we need to know 
o

A  and the concentration of the free query Q . We can argue that 

, ,
1i i j

j
To i j o

A F C C N= = = ⋅∑ ∑⋅ . The concentration Q  is given either by the numerical solution BQ  of equa-

tion (13) or by the approximate aQ  of equation (22). 

If we assume 1ρ > , we can substitute aQ Q=  from equation (24) into (30) and we can show that 
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systemK K≈ . (31) 

3.6 Estimating selectivity ratios 

An ideal outcome of a laboratory experiment in DNA computing (and even in biotechnological applications) is to 
have great separation between wanted and unwanted hybridizations. One way to express that and evaluate perform-
ance is to find the ratio of the concentration of a wanted hybridization versus an unwanted hybridization.  

Let us assume that we have a wanted complex j
iQF  and an unwanted complex 'j

rQF . Their respective equi-
librium concentration equations are: 

1

j
ij j j j o

i i i i j
i

Q F
QF K Q F K

K Q

⋅
= ⋅ ⋅ =

+
, (32) 

and 
'

' ' ' '
'1

j
rj j j j o

r r r r j
r

Q F
QF K Q F K

K Q

⋅
= ⋅ ⋅ =

+
. (33) 

Their ratio assuming they have equal initial concentrations is thus 

'

'' '
'

'

1 1
1

1

j
ij o

j i j jj
i i i

j jj j
r ir rj o

r j
r

Q F
KQF

rK Q KK Q
K K QQF Q F

K
K Q

⋅

+ +
= = ⋅

+⋅

+

. (34) 

The above ratio can be evaluated at BQ Q= . Alternatively by substituting aQ Q=  from equation (22), a 
rather interesting observation can be derived. The second fraction can be further simplified as 

' ' '

' ''
' '', ' ', '

''
'' ', '', '

1 1 111
1 1 11

1

j j j
r o r r

r rj
i ioi r i rr a T

j j j
i a i i io

rr
i Ti i roi r

K Q K K
K Q KK Q N K

K Q K Q K K
K N KK Q

ρ ρ ρ

ρ ρρ

+ + +++
j

⋅ ⋅
= ≈ ≈

+
+ ++

⋅ ⋅+

∑ ∑

∑∑

, (35) 

and since 

' '

jj
ii

j j
r r

QFSA
SA QF

= , (36) 

substituting equation (35)into (34) we obtain 

 
'

' ''

jj j j
ii i T

j j
r
jj

r r T ir

QFSA K N K K
SA K N K KQF

ρ
ρ
⋅ ⋅ +

= = ⋅
⋅ ⋅ +

. (37) 

Equation (37) illustrates that at dilute concentrations the ratio of concentrations of two query-fragment com-
plexes is analogous to the ratio of their equilibrium constant (which is expected), but it is also analogous to a term 
that highlights the dependency upon the network of fragments. 

 

4 Simulation results and numerical considerations 

For our simulations we developed MATLAB routines to evaluate Bq  and  as presented above. To find the equi-
librium constants we used the set of 32 words of length 19 presented in [

aq
12]. We used thermodynamic parameters 

from [8], and references therein, to estimate the Gibbs free energy [9] for all possible word-word combinations, 
1024 in total. This set-up will emulate situations where a single word query is used to search inside a database. The 
database is assumed to consist of targets that contain concatenations of words. In our estimation we ignored cases 
where a word hybridizes partially with a word and its neighbor. This is driven from the fact that our words are de-
signed to avoid such mishybridizations (see [9, 10, 12] for more details).  
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The equilibrium constants of the 1024 combinations were divided into two groups: (a) a ‘Good’ set of 212 
pairs of desired hybridizations, and (b) a ‘Bad’ set of 812 undesired pairs. Random pools of  constants 
were drawn. For the results presented here we chose a pool with the following distribution: 2 from the ‘Good’ set 
(

100TN =

0
1 5.40 10K e= , 0

2 3.23 9K e= ) and 98 from the ‘Bad’ (maximum ‘bad’ constant ). The corresponding 

mean value of the set is 

0
36 1.33e8K =

5.74 8K e= . In all simulations the initial concentration of fragments was 
510 /j

i o
F mol−= L . 

We evaluated the approximation error ( )B a Bq q qε = −  for [0,100]ρ ∈ . As shown in Fig. 3 the error is rather 
small when ρ  is large which strengthens the validity of our approximation. Indicatively the error falls below 8% 
when 10ρ > . 

In Fig. 4 we plotted the selectivity percentages of complexes , , and  substituting 0
1QF 0

2QF 0
36QF Bq  found for 

values of [0.001,100]ρ ∈  in equation (26). From the figure we can see than when 1ρ <  (query in excess) the selec-
tivity of the three complexes is rather small and almost equal. On the other hand when 1ρ >  the selectivity of the 
highest equilibrium constant dominates is close to 95% of the total hybridized complexes. The system demonstrates 
a non-linear behavior at the transition region. All three selectivities increase but at some point the  starts de-
creasing, subsequently  decreases, while  keeps increasing and finally dominates the network. It is clear that 
around this region the competitive hybridization due to lack of query strands becomes apparent and the most stable 
complex dominates the network. 

0
36SA

0
2SA 0

1SA

This becomes more apparent in Fig. 5 where we plot the selectivity ratios between the three fragments with the 
bi-section method in Fig. 5(a) and the approximation method Fig. 5(b). For the approximation method we used 
equation (37). The approximation method fails to capture the effect at the transition region since it is not accurate for 

1ρ < . The ratios are upper-bounded by the ratio of equilibrium constants. That bound is achieved for high ρ .   
We also estimated systemK  for various concentrations, as seen in Fig. 6. An important observation arises from 

observing systemK  at extremes. We see that systemK  is rather small when compared to dilute cases. This can interpreted 
to the effect of differential sensitivity of the systems due to the different constants we have in the pool. As the con-
centration of the query decreases the distribution of constants becomes more important. On the other hand as the 
concentration increases and the system becomes saturated this importance weakens. Furthermore we notice that for 

1ρ > , systemK  approaches asymptotically K , which proves by simulation the validity of equation (31). 
From analyzing again the selectivities we see that, in dilute, the separation efficiency between wanted and un-

wanted hybridization is very good. On the other hand, the relative separation between wanted hybridizations may 
not be representative of the desired design. It is therefore critical to evaluate the deviation from the desired outcome 
and use that as a guide to fine-tune reaction parameters and concentrations. 
 

5 Concluding Remarks 

Our DNA computing research requires hybridizations between query and target that can be non-specific with multi-
ple mismatches. In this paper we examined theoretically and by simulation the efficiency of such a system by esti-
mating the concentrations of query-target duplex formations at equilibrium. A coupled kinetic model was used to 
estimate the concentrations. Simulation is an integral part of DNA computing research since via simulation the 
number of needed laboratory experiments can decrease, thus potentially reducing operational cost.  

We offered an alternate solution to the system of equations that leads to a single equation that was proved to 
have a unique solution and can be easily adapted for computational solutions. We provided an approximate solution 
that is accurate in dilute query concentrations. Using this approximation, we can achieve a closed form expression to 
the solution of the system of equations. Furthermore, it allowed us to evaluate the selectivity ratios and estimate the 
performance of the query mechanism. 

Our simulation results showed that in dilute query concentration, where competition is favored, the separation 
efficiency between wanted and unwanted hybridizations is remarkable. Separation efficiency among wanted hy-
bridization is again very high, but not necessarily desirable. It depends on the design of the system and the sought 
after outcome and accuracy. 
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On the other hand, in excess there is almost no separation between hybridizations, that is, almost all three 
complex formations are equiprobable. This is the typical reason why in most PCR experiments the annealing tem-
perature is set high to avoid mishybridizations since the query concentration is very high and the specificity is rather 
small.  

The behavior of most systems is usually controlled by temperature but we illustrated that it can also be con-
trolled by concentration ratios. It remains to be seen whether temperature or concentration control provides better 
query selectivity. 

Appropriate selection of concentrations is important for outcome accuracy and can also decrease the cost of 
laboratory experiments. It is expected that lower concentrations will need longer reaction times and will have an 
impact on hybridization speed and hence “query speed”. Exactly assessing the impact is infeasible without knowl-
edge of forward and backward reaction rates. On the other hand relaxation time can give an insight on the level of 
dependency and provide guidelines for system design. In a future article we plan to introduce such analysis. 

It is clear that finding the appropriate reaction parameters is very critical since they affect the outcome of the 
experiment significantly. It is also critical to find similar approximations for excess cases in order to further probe 
into system behavior and find closed form solutions for selectivity and specificity.  

In a future paper we will consider the inverse problem. Namely, we commence by setting desired separation 
efficiencies and work backwards to find the best concentration parameters, and then to find the equilibrium con-
stants. The constants will give us an estimate on the needed Gibbs free energy from which we can extract sequence 
information that will eventually give us a DNA codeword library that when used will result in the expected separa-
tion efficiency.  
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Fig. 2. An Illustration of equation (17). 
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