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Abstract 
Motivated by the storage capacity and efficiency of 
the DNA molecule in this paper we propose to utilize 
DNA molecules to store digital signals.  We show that 
hybridization of DNA molecules can be used as a 
similarity criterion for retrieving digital signals 
encoded and stored in a DNA database.  Since 
retrieval is achieved through hybridization of query 
and data carrying DNA molecules, we present a 
mathematical model to estimate hybridization 
efficiency (also known as selectivity annealing).  We 
show that selectivity annealing is inversely 
proportional to the mean squared error (MSE) of the 
encoded signal values.  In addition, we show that the 
concentration of the molecules plays the same role as 
the decision threshold employed in digital signal 
matching algorithms.  Finally, similarly to the digital 
domain, we define a DNA signal-to-noise ratio (SNR) 
measure to assess the performance of the DNA-based 
retrieval scheme.  Simulations are presented to 
validate our arguments. 

Introduction 

The problem of searching in a database of digital signals 
can be described as follows.  Consider an VM l×  array 
(set) V , with rows the 1 Vl×  digital signals iv , each entry 
of which is a k–bit integer.  This set V  is hereafter termed 
the digital database.  Consider also a vector qd that 
contains Q Vl l< , k–bit integers, hereafter termed the digital 
query.  The problem at hand is to find out whether qd can 
be found in V .  Traditionally a matching criterion must be 
defined first that describes the similarity between the query 
and the digital signal at the location under examination [5].  
Overall the goal is to find (a) a yes/no answer whether a 
match has been found (in essence the criterion is 
minimized and is lower than a user supplied threshold) and 
(b) the locations and the vector identity of such matches. 

There are many criteria that can be used for matching 
and each of them offers distinct characteristics in terms of 
performance and computational cost.  Examples of these 
criteria are the mean squared error (MSE), the sum of 
absolute differences, the sum of squared error, and 
weighted versions of them.  Similarly there are different 
ways of searching within the database.  Traditional 
correlation and convolution techniques can be used, 

although the computational cost should be considered.  The 
complexity of the problem at best scales linearly with the 
size of V , but in most cases the complexity is a 
polynomial function of V .  Although the complexity of 
the matching operation is low, it is usually the number of 
such operations dictated by the size of V  that renders the 
problem difficult to implement for practical applications. 

DNA offers significant advantages when compared to 
other media for storing digital signals or data, in general. 
The DNA molecule, especially in its double stranded form, 
is very stable, compact, and inexpensive. Polymerase 
Chain Reaction (PCR) is an economical and efficient way 
to replicate databases. Querying the database can be 
implemented with a plethora of techniques. In digital 
databases the query time increases proportionally to the 
size of the database. However, in DNA databases when 
annealing is used as a search mechanism, the querying time 
is independent of the database size when the target 
molecules (the molecules representing V in our case) have 
equal concentrations. 

This article’s main contribution is the analysis and 
simulation of a DNA-based database and retrieval 
mechanism, which mirror the digital world.  Specifically, 
we show that the concentration of DNA molecules plays 
the same role as the decision threshold used in MSE based 
matching.  Furthermore, similar to the digital domain, we 
define a signal to noise ratio (SNR) metric to quantify the 
performance of the DNA retrieval scheme.   

We begin our presentation by defining the needed 
terminology on DNA chemistry and properties and sketch 
the characteristics of the equivalent DNA database system 
that can store digital signals in section 3.  In section 4 we 
show how the performance can be estimated in terms of 
efficiency and sensitivity by modeling hybridization 
kinetics.  In section 5 we offer simulation results to 
illustrate performance.  Finally, in section 6 we conclude 
this article and show a direct application of our work in 
biotechnology.   

DNA Equivalent 

Our research is centered on providing a DNA-based 
alternative to the problem of querying a digital database.  It 
is the compact nature of the DNA molecule that renders it 



an attractive storage medium.  Furthermore, the chemical 
structure of the DNA supplies us with hybridization, an 
extraordinary tool, which allows for the medium to be part 
of the computational platform, since data searches can be 
performed by utilizing it [1], [12]. 

A double helix of DNA (Deoxyribo-Nucleic Acid) is 
made from two single strands of DNA, each of which is a 
chain of nucleotides (or bases) A, G, T, and C.  
Nucleotides can be joined together in a linear chain to form 
a single strand of DNA.  Each base in DNA has its unique 
Watson-Crick complement, which is formed by replacing 
every A with a T and vice versa, and every G with a C and 
vice versa.  Every strand has a complementary sequence; 
for example, the complementary sequence of ATG is TAC.  
If two complementary sequences meet in a solution under 
appropriate conditions, they will attract each other and 
form a double stranded helical structure, the duplex.  This 
process is called hybridization or annealing.  Specific 
hybridization, refers to cases where the two single strands 
are perfectly complementary at every position and the 
double-stranded molecule that is formed is perfect, while 
non-specific hybridization, corresponds to cases with 
mismatched base pairs.   

The first step towards defining a DNA system 
equivalent to a system implemented digitally is to map the 
digital information into DNA.  The problem is also known 
as the codeword or word design problem.  In our case the 
problem translates into finding N DNA sequences or words 
xi, i=0,…,N –1 (N = 2k), each of length l  bases, capable of 
encoding integer signal values 0,…,N –1.   

In most DNA computing applications only specific 
hybridizations are acceptable.  In our case, we design DNA 
words such that the hybridization strength between them is 
inversely proportional to the absolute difference of the 
corresponding encoded integer signal values.  To 
accomplish this, we introduced, the Noise (or inexact 
match) Tolerance Constraint (NTC) [9], [10].  This 
constraint and others are needed to ensure that only wanted 
duplexes will be formed.  In other words, we want to 
minimize the possibility of formation of unwanted 
duplexes and maximize the possibility of wanted ones.  In 
a laboratory setting this translates to minimizing the 
concentration of unwanted hybridizations while 
maximizing the concentration of wanted ones.   

For simplicity let us assume that DNA sequences are 
constructed as in Figure 1, although many other different 
structures can be found [12].  The left part is the index that 
identifies the data, which appear on the right. The index 
part of different elements should be very dissimilar.  For 
clarity we term these structures database elements (DEj).  
Each DEj is a single stranded DNA, it has concentration Cj, 
and is identified by a unique index (not shown).  
Furthermore it has a data payload of L  bases (L = l .lV) 
hence it is capable of storing lV signal values.  Data are 
concatenations of DNA words.   

The system can be described with the following 
parameters and inputs: 

• M DEs (we have M digital signals), each of 
concentration Cj and sequence information sj of 
length L , j=1…M.   

• We therefore need M indices.  Each index has a 
length IN. The discussion on design requirements 
for the indices and their generation is omitted from 
this article for brevity. 

• A query Q of length LQ<L, shown in Figure 1 as 
solid gray line, of concentration 

o
Q . 

• Temperature T and salt concentration (presently 
ignored). 

The DNA database can be constructed by first mapping 
the digital signals into DNA sequences, then chemically 
synthesizing them.  Finally, a DNA index is attached to 
each sequence and the sequences are placed in a test tube 
in a soluble state [12].  Information capacity is a critical 
component of a database although in many cases capacity 
is a function of speed and accuracy.  The study of 
information capacity of DNA databases has to be coupled 
with the accuracy of the database.  Although information 
theoretic limits and bounds can be found it is of special 
interest to find the capacity of a database as a function of 
database size (number and length of elements), volumetric 
space (the volume of the database), and the error rate.  
Knowing the volumetric space and database size we can 
estimate the concentration of the database elements.  There 
is a limit on the concentration for each element imposed by 
the laboratory methods employed for database 
management and information extraction.  For example if 
PCR is for information extraction the minimum 
concentration allowed depends on the length of the 
amplified product [3], [4].  It is therefore very hard at this 
point to estimate the capacity of the database since it 
depends on the length of the DNA words l, the number of 
DEs M, and the laboratory protocols used parameters that 
are constantly changing.   

The scalability of the database depends on the available 
indices.  If the length of each index is IN then the 
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Figure 1: Illustration of hybridizations between query and 
DEj. 
 
 



maximum available number of indices is 4IN.  In practice 
this number is much smaller due to certain impose 
constraints. If the indices used are already reaching the 
limits for the given index length adding new database 
elements is rather hard without redesigning the whole 
database.  On the other hand if the available indices are not 
exhausted the addition of a new database element is rather 
easy, since it requires only the synthesis of the new 
database element.   

When a search is needed a protocol similar to the 
following can be employed: 

1. Find Q as the DNA mapping of the digital query 
qd. 

2. Synthesize the complement of Q. 
3. Take a sample of the solution.  
4. Add the query strand. 
5. Cool down to allow hybridization between a 

database element and the query strand.   
6. Detect the hybridization event using one of several 

spectroscopic techniques, i.e., fluorescent labels 
attached to the query strand.   

In the case where a simple yes or no answer to whether 
the query can be found in the database was needed, a 
change in the fluorescent response will indicate success. Q 
once inserted in the test tube will try to hybridize to the 
most favorable and stable locations to form complexes 
[12]. Stability is a function of sequence information, 
concentrations, and reaction parameters.  Therefore the 
outcome of a search can change dramatically when varying 
the above parameters.  Hence, it is critical to quantify the 
hybridization behavior. 

 To simplify our presentation we introduce the notion 
of fragments.  A fragment j

ipF  represents the DNA sub-
sequence of DEj at location i of length p with concentration 

j
ipF .  It is clear that j

ipF  is a subset of js .  Furthermore, in 

our case the initial concentration of j
ipF  denoted by j

ip o
F is 

equal to jC . 
Subsequently we can model the query fragment 

complexes as j
ipQF .  Such complexes are illustrated in 

Figure 1 at various locations.  Without loss of generality, 
to ease our analysis and reduce the complexity we will 
assume that (i) p=LQ, (ii) complexes will only have 
internal mismatches (none in the terminal or penultimate 
positions).  Due to (i) and (ii), the total number of 
complexes is /T QN M L L= ⋅ .  Since p is the same for all 
cases, we will drop it from our notation.  The kinetic 
analysis will allow us to estimate j

iQF , which can be 

used to assess whether DNA hybridization can be used as a 
matching criterion. 

Modeling Hybridization Reactions 

Equilibrium solution 

To estimate j
iQF  we first have to model the hybridization 

reaction between a query molecule Q and a fragment j
iF  

by  
 , ,f

r

Kj j
i iK

Q F QF i j+ ∀ .    (1) 

Eq. (1) can be represented mathematically by time 
dependent differential equations, the solution of which 
requires knowledge of the reaction rates fK  and rK , 
which can only be estimated through laboratory 
experiments and in general are not universal.  Usually an 
equilibrium analysis is adopted that renders the above 
equations time-independent [4].  In equilibrium the 
following relation between the reaction rates and 
concentrations holds 

exp
j j

ifj i
i j

r i

QFK G
K

K R TQ F
⎛ ⎞Δ

= = = −⎜ ⎟⋅⋅ ⎝ ⎠
,   (2) 

where GΔ  is the Gibbs free energy, R  is the Boltzman 
constant, and T  is the temperature in Kelvin.  The Gibbs 
free energy for DNA complexes can be estimated using 
parameters available in the literature [4], [8], which are a 
function of the sequences Q  and j

iF . 
The mass-conservation equation on the query is  

,
j

io i j
Q Q QF= +∑ ,      (3) 

where Q is the concentration of the free (un-hybridized) 
query.  The sum is over NT terms. 

Likewise, utilizing the mass-conservation equations for 
each fragment we have 

, ,j j j
i i io

F F QF i j= + ∀ .    (4) 

Our goal is to find j
iQF  from the system of Eqs. (3) and 

(4).  From equations (2) and (4) we have: 

...
1

j j
i ij j j o

i i i jo
i

F K Q
QF F F

K Q

⋅ ⋅
= − = =

+ ⋅
.  (5) 

In the above equation the only unknown is Q .  

Combining Eqs. (3), (5) and setting 
o

q Q Q= , after 
some manipulation we have [13]  

( )
( )( )

( )

( )

,
1

1

h q

j g q
i oo

i j j
io

F Q q
q

Q K q

⋅
= −

+
∑ .    (6) 

Thus, the problem of determining j
iQF  is equivalent 

to finding the roots of f(q)=h(q)–g(q), since given q each 
j

iQF  can be finally estimated by substituting 
o

Q q Q= ⋅  



in Eq. (5).  Based on the intermediate value theorem, we 
have shown that there exists a unique qs in [0,1] such that 
f(qs)=0 [13].  Since a solution cannot be found analytically, 
instead a solution qB can be found computationally such 
that |qB – qs|≤ ε using any root-finding method [6].   

Estimating Query Selectivity 
Selectivity is a term commonly used in analytical 
chemistry [14].  In our case we are interested in the 
selectivity of outcomes from annealing reactions.  
Annealing selectivity is defined as 

,

j
ij

i j
ii j

QF
SA

QF
=
∑

.     (7) 

This dimensionless expression can be seen as the 
percentage of the complex j

iQF  within all the hybridized 

complexes or as the probability of such hybridization 
event.  Since in our case we only have j

iQF  type of 
complexes annealing selectivity can be seen as query 
selectivity.  (Query selectivity can also be found in the 
literature of designing and optimizing digital databases.)  
Selectivity can also be used as an indication of matching 
efficiency, as we will see in the next section.   

Another critical component for evaluation is the 
selectivity per database element (per-DE), which can be 
defined as  

' 'j j
ii

SA SA= ∑ ,       (8) 

essentially indicating the percentage of a particular 
retrieved database element.   

Criteria for Comparison 
Similar to [7] we can define the signal to noise ratio as 

, desired

, un-desired

j
i

i j
j

i
i j

SA
SNR

SA
∈

∈

=
∑
∑

.      (9) 

In our case desired hybridizations j
iQF  are those for which 

the MSE of their corresponding signal values is less or 
equal than a threshold TP, while un-desired hybridizations 
are all the rest.  In addition we can define the error E 
involved as  

1
1

E
SNR

=
+

.       (10) 

The error is very useful in estimating capacity as 
mentioned earlier. 

Simulation Results 

For our simulations we developed MATLAB routines to 
estimate j

iQF  as presented above.  From a set of 

experiments we chose: (i) the database V (M=3, l=20, 
tabulated in Figure 2), (ii) the digital query qd={21}, and 
(iii) signal range [0,…,31] (k=5).  This set-up will emulate 
situations where a single word query is used to search 
inside a database.   

We converted the database to a DNA equivalent using 
the set of 32 words of length 19 presented in [11] and 
found their equilibrium constants at T=60oC as mentioned 
in section 3.1.  The statistics of their distribution are 
maximum constant 1.24E17, minimum 2.56, and 
σ=1.60E16.  The words are optimized using the NTC (see 
section DNA Equivalent) to have large equilibrium 
constants if their corresponding signal differences are less 
than TP=4.  In our estimation we ignored cases where a 
word hybridizes partially with a word and its neighbor.  
This is driven from the fact that our words are designed to 
avoid such mishybridizations (see [9], [11] for more 
details).  In all simulations the initial concentration of 
fragments j

i o
F was constant 510 mol

LiterC −= .  The query 

concentration 
o

Q  was varying multiples of C. 
In Figure 3 we show as a pseudo-gray image 

1/(MSE+1), between qd and V.  In Figure 5 we show in 
four pseudo-gray images the selectivity j

iSA  for 
o

Q equal 
to, 1

10 C  in (a), C  in (b), 10C  in (c) and 100C  in (d).  By 
comparing Figure 3 with each of the sub-plots in Figure 5 
we can see that for low query concentrations the 
selectivities resemble the inverse MSE of Figure 3,  

30 13 14 12 5 20 1 30 28 22 22 17 10 22 5 28 16 21 11 18
24 30 29 27 7 9 24 15 17 27 13 23 7 10 23 28 29 27 10 24
6 30 2 1 7 7 15 14 7 1 27 14 7 18 13 19 27 22 11 10  

Figure 2: The values of database V. 
 
 

Inverse proportional MSE. 1 / ( MSE +1 ). (log−scaled intensities)
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Figure 3: Inverse proportional MSE between V and query 
{21}.  (‘White’ indicates MSE (min) = 0, while ‘black’ 
indicates MSE (max) =400.) 
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Figure 4: j

iSA  (j, i as y- and x-axis respectively) as pseudo 
images for four query concentrations.  (‘White’ indicates 
large selectivity, while ‘black’ indicates small.) 
 
specifically graph (c) is close to Figure 3.  As 

o
Q  

increases the separation between the elements is not 
adequate.  Furthermore, we can see that 1

18F (which 
corresponds to 21 in V) corresponds to a digital value equal 
to qd (21 in our case) and hence the MSE is equal to zero.  

1
18SA  is therefore always the highest selectivity.  We 

observe however, that as the query concentration increases 
the sensitivity of the system decreases and more 
‘similarity’ is allowed, hence the more ‘white’ in Figure 
5(d). 

The per-DE selectivities found by Eq. (8) are shown in 
Figure 5(a).  We can see that 1SA , is dominant in all cases 
since it contains 1

18F . However we notice that the 
selectivity SA3 of DE3 of, which contains 3

18F  (the next 
smallest MSE is equal to 1), is initially small but it 
increases as 

o
Q increases.  Unfortunately this comes at the 

expense of SNR and E (since they are defined for all the 
elements in the database), as we can see in Figure 5(b), that 
is SNR decreases while E increases as the query 
concentration increases. We repeated the previous 
experiments with a two sample digital query qd2={21 11} 
and compared its performance with the previous single 
word scenario.  We used the same integer to DNA 
sequence mapping.  We calculated the equilibrium 
constants between all possible pairs of database-query 
duplexes at T=60oC as before.  The statistics of their 
distribution are maximum equilibrium constant equal to 
2.69E20, minimum equal to 1.49E01, and σ equal to 
3.56E19.  We shall mention that we only took into 
consideration duplexes of length 38 bases long equal to the 
length of the query.  It is possible that a query may 
partially hybridize to only one corresponding word in the 
database and leave the rest of the query molecule 

overhanging.  Such events are possible and are motivated 
by thermodynamics and molecular kinetics and energy 
minimization.  Recall that the DNA molecules will seek the 
least energy consuming conformation.  We refrained from 
such analysis for brevity. 

In agreement with our previous experiment the initial 
concentration of fragments was 510 mol

LiterC −= .  The query 
concentration 

o
Q  was varying as a multiple of C.  

Similarly to Figure 3 we show as a pseudo-gray image 
the inverse MSE, between our new qd and V in Figure 7.  
As before in Figure 8 we show in four pseudo-gray images 
the selectivity j

iSA  for various initial concentrations
o

Q .  
By comparison we see, as in the previous experiment, the 
resemblance between the two figures, which illustrates that 
the method can be extended to bigger query sizes.  We can 
see that 1

18F (which corresponds to the consecutive samples 
{21 11} in V) corresponds to a digital value equal to our 
two-word query qd and therefore the MSE is equal to 0.  

1
18SA  is therefore always the highest selectivity.  Again we 

can see that the sensitivity of the system can be affected by 
controlling the query concentrations. 

The per-DE selectivity found by Eq. (8) are shown in 
Figure 6(a).  We can see that 1SA , is dominant in all cases 
since it contains 1

18F .  The system behaves differently with 
longer queries.  This can be seen by examining the ratio 

2SA  / 3SA  from the data in Figure 5(a) and Figure 6(a). 
With shorter queries the ratio is much bigger when 

compared to longer queries.  The explanation is that while 
in the single query case DE2 contained desired 
hybridizations in the two-word case it does not.  (We shall 
mention that the threshold utilized here to separate desired 
from undesired hybridizations is the same since our 
matching criterion is MSE.  The MSE criterion is 
independent of the query length due to its averaging 
element.)   

(a)

(b)
 

 
o

Q  
 

j' 1
10C  C  10C  100C  

1 9.99E-01 9.99E-01 5.43E-01 3.80E-01 

2 4.70E-07 1.11E-04 2.19E-01 3.42E-01 
'jSA  

3 2.72E-06 6.40E-04 2.38E-01 2.78E-01 

 

SNR 5.29E+09 2.25E+07 1.92E+02 4.98E-01 

E 1.89E-10 4.45E-08 5.19E-03 6.68E-01 

Figure 5: (a) Eq. (8), (b) SNR and E for various 
o

Q with 
query {21}. 
 
 



Actually DE2 contains the fragment 2
12F  (undesired 

hybridization MSE=10) that when hybridized with the 
query it creates a more stable bond than the bond formed 
between the query and 3

14F  (desired hybridization 
MSE=6.5).  In other words it has a larger equilibrium 
constant ( 2 3

12 14K K> ).  This creates a false positive, whose 
effects are obfuscated due to the presence of other more 
stable pairs.  On the contrary let us consider an example 
database where only two DEs are present (DE1, DE2) and 
DE1 includes the fragment represented by 2

12F  while DE2  

(a)

(b)
 

 
o

Q  
 

j' 1
10C  C  10C  100C  

1 9.99E-01 9.75E-01 5.12E-01 3.52E-01 

2 2.85E-10 1.04E-08 1.94E-01 3.20E-01 
'jSA  

3 6.74E-04 2.40E-02 2.92E-01 2.92E-01 

 

SNR 2.11E+09 5.79E+07 6.46E-01 9.46E-02 

E 4.71E-10 1.72E-08 6.07E-01 9.13E-01 

Figure 6: (a) Eq. (8), (b) SNR and E for various 
o

Q  with 
query {21 11}. 
 
 
includes the fragment represented by 2

12F .  If 3
14F  is the 

only desired hybridization and then we would have had a 
false positive since DE2  would have been retrieved.  

Such errors are expected since the codewords are 
designed for single word interactions (so that the codeword 
design problem is computationally tractable) and not 
multiple word ones.    

Conclusions 

In this article we have shown that DNA hybridization can 
be used as the DNA equivalent of a digital matching 
criterion when developing DNA databases capable of 
storing digital signals.  Such databases offer significant 
advantages over digital databases since they are much 
more compact and require less maintenance.  Our 
simulations showed that at low query concentrations 
hybridizations are capable of retrieving data from the 
database that are similar to the query.  Furthermore we can 
control the sensitivity and accuracy of the database by 
adjusting the concentration.  We showed also that larger 
queries could be used.  At the same time we highlighted 
the need for developing codeword design algorithms that 
are capable of reducing false positives when multiple word 
queries are used.   

Our goal is to offer a demonstrational small scale in 
vitro DNA database, but in order to reduce laboratory costs 
we have developed the simulators employed here.  
Evidence of the simulations leads us to believe that such a 
system may not be long from becoming a reality.  Our 
work is in fact inspired by nature since we are utilizing 
hybridization, one of the most fundamental properties of 
DNA.  All the information needed to create an organism is 
stored into DNA.  Evolution has created this remarkable 
molecule for that purpose.  It is well worth investigating 
the potential of using the same molecule to store 
information other than biological. 
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Figure 7: Inverse proportional MSE between V and query 
{21 11}.  (‘White’ indicates MSE (min) = 0, while ‘black’ 
indicates MSE (max) =380.5.) 
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Figure 8: j
iSA  (j, i as y- and x-axis respectively) as pseudo

images for four query concentrations.  (‘White’ indicates
large selectivity, while ‘black’ indicates small.). 
 
 



This work can also be applied in designing, or 
estimating the performance of sequences used as primers 
or probes in Polymerase Chain Reactions or Microarray 
experiments.  These techniques are commonly used, for 
example, in amplifying and separating genomic material 
and in identifying genetic diseases. 
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