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ABSTRACT
In this paper a simulation of single query searches in very

large DNA-based databases that are capable of storing and
retrieving digital signals is presented. Similarly to the digital
domain, a signal-to-noise ratio (SNR) measure to assess the
performance of the DNA-based retrieval scheme in terms of
database size and source statistics is defined. With approx-
imations, it is shown that the SNR of any finite size DNA-
based database is upper bounded by the SNR of an infinitely
large one with the same source distribution. Computer sim-
ulations are presented to validate the theoretical outcomes.

1. INTRODUCTION

DNA molecules can be used to store digital signals as was
first presented in [1]. DNA as a medium is ideal for long
term archival of information for rare access with low mainte-
nance cost and high capacity, and furthermore allows for par-
allel content based retrieval. The signals are encoded using
a look-up table that matches signal values, i, to fixed length
DNA sequences, called words wi. The design of this look-up
table, also known as the codeword design problem in DNA
computing [2, 3] is of critical importance. The signals are
encoded using this look-up table and then DNA sequences
are synthesized to form the DNA molecules that form the
database. A unique index DNA sequence is attached to the
beginning of a DNA encoded signal. An example of such
database is shown in Fig. 1. For each database element Sm,
with concentration Cm, the gray part is the index that iden-
tifies the data, which are shown as solid black lines. Data
are concatenations of DNA words wi, i = 0, . . . ,N−1, in the
alphabet A,T,G,C, each of length l.

To retrieve information from the database query
molecules are synthesized. Queries can be signal segments
of interest. The query signal is encoded using the same look-
up table, but the complementary sequence (using the rule
A ↔ T,G ↔ C) is synthesized and introduced in the solu-
tion. The query molecules are labeled with a dye that flu-
oresces at the event of hybridization. The query molecules
will hybridize to complementary molecules in the database
as seen in Fig. 1 and will fluoresce. This results in a yes/no
answer, based on whether the specific signal is present in
the database. The amount of fluorescence is directly propor-
tional to the concentration of query-database element molec-
ular complexes.

The question of perfect hybridization (perfect matching)
and imperfect hybridization (partial matching in the mean
squared error sense) was also addressed in [1]. By modi-
fying the codeword design problem controlled imperfect hy-
bridizations can be performed.
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Figure 1: Illustration of hybridizations between query and
database elements. (The variable i indicates location.)

Hybridization between molecules is a random process
and the probability of two molecules hybridizing is a func-
tion of concentrations, thermodynamic strength of their
chemical bond, temperature and salt concentration [4].
Therefore, it is critical to quantify the percentage of fluo-
rescent output that corresponds to desired hybridizations and
not to erroneous ones. Consequently, a signal to noise ratio
(SNR) can be defined, where signal is considered the fluores-
cence corresponding to desired hybridizations and noise the
fluorescent response of undesired ones.

Simulation frameworks to model DNA hybridization in-
teractions were presented in [5, 6]. Hence, concentrations
of query-database element complexes can be estimated and
SNR measurements can be taken. The main contribution of
this article is the SNR study of querying very large databases
with a single query. The presented framework allows for
numerical solutions as well as approximations under certain
conditions. Following certain approximations, it is shown
that the SNR of a DNA database is upper bounded by the SNR
of an infinitely large DNA database with the same source
distribution. This result is in agreement with previously pre-
sented error measurements [6] which were derived empiri-
cally. Consequently, in terms of retrieval accuracy, there is a
performance gain as the database size increases.

The framework can also be used to simulate and opti-
mize laboratory protocols such as polymerase chain reaction
(PCR), primer and oligo design, microarray oligo design, and
microarray simulations.

This paper is organized as follows. In Section 2 the char-
acteristics of a DNA-based database system that can store
digital signals are sketched. The framework for kinetic mod-
eling of single query searches in DNA databases and perfor-
mance evaluation using an SNR metric is presented in Sec-
tion 2. The study on the SNR of an infinitely large database
is presented in Section 4. Simulation results are given in Sec-
tion 5. Finally in Section 6 conclusions are given along with
possible future extensions and applications in life sciences.
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2. MODELING SINGLE QUERY RETRIEVAL

The overall system can be described with the following pa-
rameters and inputs:

1. M database elements Sm (M digital signals), each of con-
centration Cm and sequence information sm each of length
L, m = 1, . . . ,M.

2. A query Q, shown in Fig. 1 as a solid gray line, of con-
centration |Q|o and sequence information sQ of length lq.

3. Temperature T and salt concentration |Na++|.
Queries are concatenations of complements of code-

words. It is assumed here that the query is a single code-
word Q = wC

i and that only perfectly aligned linear com-
plexes (only internal mismatches present) are formed, there-
fore only word to word interactions are considered.

Under these assumptions query database element com-
plexes are actually codeword pairs wC

i w j. The main objective
in this section is to estimate the concentration of complexes
wC

i w j, denoted by
∣∣wC

i w j
∣∣, in equilibrium, assuming that all

database elements have equal concentration Cm = C.
Since there are M database elements and each database

element is L bases long, the total number of complexes NT
is equal to NT = M L

l = M · k. For a given wC
i , there are N

possible hybridization reactions of the form,

wC
i +w j

K f
GGGGGGBFGGGGGG

Kr
wC

i w j, ∀ j ∈ [0,N−1], (1)

that fully describe all possible interactions. The parameters
K f and Kr are called respectively the forward and reverse rate
constants. They depend on environmental parameters and
laboratory settings and thus are hard to estimate. Therefore,
subsequently an equilibrium analysis is sought after.

Under an equilibrium assumption, the differential equa-
tions that describe the mass action equations that satisfy Eq. 1
become polynomial equations. Therefore the equilibrium
constant Ki j, can be defined as the constant of the complex
wC

i w j, according to

Ki j =
|wC

i w j|
|wC

i ||w j|
= exp

(
−∆Gi j

R ·T
)

, (2)

where |wC
i | and |w j| are the concentrations of the unhy-

bridized (free) wC
i and w j, respectively, ∆Gi j is the Gibbs

free energy of the complex wC
i w j, R the Boltzman constant,

and T the temperature in Kelvin. The Gibbs free energy can
be estimated using the nearest neighbor model in [4].

There exist N integers j [0,N− 1] encoded into a DNA
codeword w j with probability P(w j). Furthermore it is
known that there are NT = M · k occurrences of codewords
in M database elements, therefore the initial concentration∣∣w j

∣∣
o is given by

∣∣w j
∣∣
o = P(w j) ·M · k ·C. (3)

The mass conservation law dictates that the mass of the
reactants (initial concentration of the query) must equal the
mass of the products (concentration of unhybridized/free

query and hybridized query-word complexes), that is
∣∣wC

i
∣∣
o =

∣∣wC
i
∣∣
free +

∣∣wC
i
∣∣
hybridized

=
∣∣wC

i
∣∣+

N−1

∑
j=0

∣∣wC
i w j

∣∣ =
∣∣wC

i
∣∣+

N−1

∑
j=0

Ki j
∣∣wC

i
∣∣ · ∣∣w j

∣∣ . (4)

Similarly, the mass conservation equation for each codeword
w j is given by

∣∣w j
∣∣
o =

∣∣w j
∣∣+ ∣∣wC

i w j
∣∣ =

∣∣w j
∣∣+Ki j

∣∣wC
i
∣∣ · ∣∣w j

∣∣ , (5)

or
∣∣w j

∣∣ =

∣∣w j
∣∣
o

1+Ki j
∣∣wC

i

∣∣ . (6)

By substituting Eq. 6 into Eq. 4, an equation with the
unknown

∣∣wC
i

∣∣ can be defined:

∣∣wC
i
∣∣
o =

∣∣wC
i
∣∣+

N−1

∑
j=0

Ki j
∣∣wC

i
∣∣ ·

∣∣w j
∣∣
o

1+Ki j
∣∣wC

i

∣∣ . (7)

Following the approach in [7] it can be shown that Eq. 7
has a unique solution for

∣∣wC
i

∣∣ that can be found using the bi-
section method, which is henceforth denoted by

∣∣wC
i

∣∣
B. By

dividing Eq. 7 by
∣∣wC

i

∣∣
o and setting

ωi =

∣∣wC
i

∣∣
∣∣wC

i

∣∣
o

ωi ∈ [0,1], (8)

the following function can be defined

f (ωi) =−1+ωi +
N−1

∑
j=0

∣∣w j
∣∣
o∣∣wC

i

∣∣
o

· ωi
1

Ki j ·|wC
i |o +ωi

. (9)

f (ωi) has a single root since it is a monotonically increasing
function as seen bellow

f ′(ωi) = 1+
N−1

∑
j=0

∣∣w j
∣∣
o∣∣wC

i

∣∣
o

·
1

Ki j ·|wC
i |o(

1
Ki j ·|wC

i |o +ωi

)2 > 0. (10)

In addition since f (0) =−1 < 0 and

f (1) =
N−1

∑
j=0

∣∣w j
∣∣
o∣∣wC

i

∣∣
o

·
(

1
Ki j ·

∣∣wC
i

∣∣
o

+1

)−1

> 0. (11)

then according to the intermediate value theorem there exists
a unique ωi

S ∈ [0,1] such that f (ωi
S) = 0.

To find an approximate solution to f (ωi) = 0, Eq. 3 is
substituted into Eq. 9 to define the following equation

1−ωi =
N−1

∑
j=0

P(w j) ·M · k ·C∣∣wC
i

∣∣
o

· ωi
1

Ki j ·|wC
i |o +ωi

= M · k · C∣∣wC
i

∣∣
o

·
N−1

∑
j=0

P(w j) · ωi
1

Ki j ·|wC
i |o +ωi

. (12)
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If ρ = C
|wC

i |o and h(ωi) = ωi

(
1

Ki j ·|wC
i |o +ωi

)−1

are set, the

following is obtained

1−ωi

M · k ·ρ =
N−1

∑
j=0

P(w j) ·h(ωi). (13)

Each h(ωi) inside the sum takes values in the range [0,1)
for ωi ∈ [0,1]. This is due to the fact that the term 1

Ki j ·|wC
i |o is

much smaller than 1 therefore h(1)' 1.

As ωi → 0, h(ωi) can be approximated by a linear term
by finding its first derivative, and evaluating it close to zero
to essentially find its tangent at zero as presented in [7]:

h(ωi) =
ωi

1
Ki j ·|wC

i |o +ωi
≈ Ki j

∣∣wC
i
∣∣
o ·ωi. (14)

Substituting the above equation and ρ = C
|wC

i |o in Eq. 13 after

some manipulations the following expression is defined

ωi =
1

1+M · k ·C ·
N−1
∑
j=0

P(w j) ·Ki j

=

∣∣wC
i

∣∣
∣∣wC

i

∣∣
o

, (15)

or finally

∣∣wC
i
∣∣ =

∣∣wC
i

∣∣
o

1+M · k ·C ·
N−1
∑
j=0
·Ki j ·P(w j)

. (16)

The last equation can be further approximated as

∣∣wC
i
∣∣≈

∣∣wC
i

∣∣
o

M · k ·C · K̂ , (17)

where
N−1
∑
j=0

Ki j ·P(w j) = K̂.

The linear approximation Eq. 15 is close to the real solu-
tion ωS

i , if (M · k ·ρ)−1 < min{P(w0), P(w1), ...,P(wN−1)}
holds. This is equivalent to

∣∣wC
i

∣∣
o < min{|w0|o ,

|w1|o , ..., |wN−1|o}, which is termed thereafter as diluted
query concentration.

By substituting Eq. 6 in Eq. 2 the following expression is
defined

∣∣wC
i w j

∣∣ = Ki j ·
∣∣wC

i
∣∣ · ∣∣w j

∣∣ =

∣∣w j
∣∣
o ·Ki j ·

∣∣wC
i

∣∣
1+Ki j

∣∣wC
i

∣∣ . (18)

Finally, substituting Eqs. 3 and 17 in the above equation it is
obtained

∣∣wC
i w j

∣∣ =
M · k ·C ·P(w j) ·Ki j ·

∣∣wC
i

∣∣
o

M · k ·C · K̂ +Ki j
∣∣wC

i

∣∣
o

. (19)

Having estimated |wC
i w j| the concentration ratios and the

SNR is defined next.

3. CONCENTRATION RATIOS AND
SIGNAL-TO-NOISE RATIO

It is very common in the analysis of molecular systems to
evaluate ratios of concentrations. This is very useful, for ex-
ample, when examining the ratio of a desired hybridization
(event) to an undesired one. In the present case these ratios
can be defined as:

∣∣wC
i w j

∣∣
∣∣wC

i w j′
∣∣ =

Ki j

Ki j′
·
∣∣w j

∣∣
o∣∣w j′
∣∣
o

· 1+Ki j′ ·
∣∣wC

i

∣∣
1+Ki j ·

∣∣wC
i

∣∣ (20)

Utilizing Eqs. 17 and 3 after some simple manipulations the
following expression for the ratio can be defined

∣∣wC
i w j

∣∣
∣∣wC

i w j′
∣∣ =

Ki j

Ki j′
· P(w j)

P(w j′)
·

M · k · C
|wC

i |o · K̂ +Ki j′

M · k · C
|wC

i |o · K̂ +Ki j
. (21)

Eq. 21 illustrates that at dilute concentrations the ratio of
concentrations of two complexes is analogous to the ratio of
their equilibrium constants (which is expected), but it is also
analogous to a term that highlights the dependency on the
ensemble of fragments, through M · k · C

|wC
i |o · K̂. Tulpan et

al. [2], hint on this dependency without actually deriving it.
Similarly to [6] the signal-to-noise ratio (SNR) of a

search with query wC
i can be defined as:

SNR(wC
i ) =

∑
j∈ desired

∣∣wC
i w j

∣∣

∑
j∈ un-desired

∣∣wC
i w j

∣∣ . (22)

A new Noise Tolerance Constraint (NTC) was presented in
[1] that allows for the design of codewords such that de-
sired hybridizations are those for which |i− j| ≤ TP, while
un-desired are those for which |i− j| > TP, where TP is a
user supplied parameter that defines the noise tolerance of the
codeword set. It has been shown that for single queries code-
word sets that follow the NTC, the hybridization strength be-
tween codewords is analogous to the mean squared error of
the corresponding indices [5].

In this work desired hybridizations wC
i w j are those for

which the MSE of their corresponding signal values is less
than or equal to the parameter TP, while un-desired hy-
bridizations are all the rest. However, since there can be only
codeword pair interactions, desired and un-desired pairs can
be explicitly specified. Hence, Eq. 22 can be written as

SNR(wC
i ) =

i+TP
∑

j=i−TP

∣∣wC
i w j

∣∣

i−TP−1
∑
j=0

∣∣wC
i w j

∣∣+
N−1
∑

j=i+TP+1

∣∣wC
i w j

∣∣
, (23)

or by dividing with
∣∣wC

i wi
∣∣, can be written as

SNR(wC
i ) =

1+
i−1
∑

j=i−TP

|wC
i w j|

|wC
i wi| +

i+TP
∑

j=i+1

|wC
i w j|

|wC
i wi|

i−TP−1
∑
j=0

|wC
i w j|

|wC
i wi| +

N−1
∑

j=i+TP+1

|wC
i w j|

|wC
i wi|

. (24)
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The value of SNR(wC
i ) can be calculated by substituting

Eq. 20 into the above equation.

4. SNR OF AN INFINITELY LARGE DATABASE

In this section expressions for the SNR and the error rate of
the system as the number of database elements M reaches
infinity are derived. Using the assumptions of Section 2, it
is shown that a system allowing for a noise tolerant retrieval
(like the one used in this work) has a lower error probability
than other systems without noise tolerance.

When more database elements are introduced into the
database (M → ∞), the number of codewords increases and
therefore their concentration increases, that is lim

M→∞

∣∣w j
∣∣
o →

∞, while the concentration of the queries is bounded (query
in dilute). From Eq. 21 after some basic steps the following
can be had

lim
M→∞

∣∣wC
i w j

∣∣
∣∣wC

i wi
∣∣ =

∞
∞

= . . . =
Ki j

Kii
· P(w j)

P(wi)
. (25)

Based on the previous equation, and Eq. 24

lim
M→∞

SNR(wC
i ) = SNR(wC

i )∞ =

=
1+

i−1
∑

j=i−TP

(
Ki j
Kii
· P(w j)

P(wi)

)
+

i+TP
∑

j=i+1

(
Ki j
Kii
· P(w j)

P(wi)

)

i−TP−1
∑
j=0

(
Ki j
Kii
· P(w j)

P(wi)

)
+

N−1
∑

j=i+TP+1

(
Ki j
Kii
· P(w j)

P(wi)

)

=

i+TP
∑

j=i−TP

(Ki j ·P(w j))

i−TP−1
∑
j=0

(Ki j ·P(w j))+
N−1
∑

j=i+TP+1
(Ki j ·P(w j))

, (26)

or if a uniform distribution for w j is assumed

lim
M→∞

SNR(wC
i ) =

i+TP
∑

j=i−TP

Ki j

i−TP−1
∑
j=0

Ki j +
N−1
∑

j=i+TP+1
Ki j

. (27)

It will be shown experimentally that Eq. 26 is an upper-bound
for the SNR performance of a database with a finite number
of database elements. That is,

SNR(wC
i )M ≤ SNR(wC

i )∞. (28)

The corresponding error probability can be defined as

E∞(wC
i ) =

∑
j∈ un-desired

∣∣wC
i w j

∣∣

∑
j∈ all

∣∣wC
i w j

∣∣ =
1

1+SNR(wC
i )∞

. (29)

For a uniform distribution of codewords the correspond-
ing error probability is in agreement with the definition of
computational incoherence in [6] (the probability of error in
annealing reactions). However, the analysis in [6] is rather
qualitative than quantitative. In this section it was shown
(using a linear approximation), that at infinity the error rate
is only a function of the source statistics P(w j) and the equi-

librium constants Ki j.
The performance of the proposed retrieval and codeword

design system can be compared with codeword designs that
do not allow any error. Assuming a codeword set with equi-
librium constants K′

i j that does not allow any error during
retrieval (i.e., a match is declared only when it is perfect).
The SNR of a search w′i at infinity can be found by replacing
Ki j with K′

i j, and setting TP = 0 in Eq. 27, that is,

lim
M→∞

SNR(w′Ci ) =
K′

ii
i−1
∑
j=0

K′
i j +

N−1
∑

j=i+1
K′

i j

. (30)

By comparing Eqs. 30 and 27, in order for the SNR expres-
sion in Eq. 30 to be larger than or equal to the expression in
Eq. 27 either

K′
ii ≥

i+TP

∑
j=i−TP

Ki j, (31)

or

i−1

∑
j=0

K′
i j +

N−1

∑
j=i+1

K′
i j ≤

i−TP−1

∑
j=0

Ki j +
N−1

∑
j=i+TP+1

Ki j, (32)

must hold.
This shows that controlled cross-hybridization is actually

beneficial in terms of SNR when designing such systems,
since Eqs. 31 or 32 need to be satisfied by a system not al-
lowing for any hybridization errors.

5. COMPUTER SIMULATION OF DNA DATABASES

In this section simulation results are presented, which were
obtained when the models and derivations of the previous
section were implemented in a computing language (MAT-
LAB) to simulate data retrieval in a test DNA database. As
a signal to DNA encoding strategy the codeword set of 32
words of length 19 derived with the algorithm presented
in [3] for TP = 3 is used.

The accuracy of the approximate solution of Eq. 7 pro-
vided by Eq. 17 was compared with the computational so-
lution

∣∣wC
i

∣∣
B. The SNR was chosen as a comparison met-

ric. The query was the integer qd = {14}. The equilib-
rium constants between qd = {14} and the signal values
0, . . . ,31 were found. A uniform distribution was assumed
for the source, that is P(w j) = 1/32, j = 0, . . . ,31. M was
equal to 3 and there were k = 20 words per database ele-
ment. The initial concentration of each database element was
C = 10−5mol/Liter. According to Eq. 23 and TP = 3 the SNR
can be found as

SNR(wC
14) =

17
∑

j=11

∣∣wC
14w j

∣∣

10
∑
j=0

∣∣wC
14w j

∣∣+
31
∑

j=18

∣∣wC
14w j

∣∣
. (33)

The SNR for ρ = C/
∣∣wC

14

∣∣
o = 10−3, . . . ,102 was found

using the bisection method and the approximation. The re-
sults are shown in Fig. 2. When ρ > 1 the approximate solu-
tion is very close to the exact computational solution, while
for ρ < 1 the approximation does not hold. Furthermore, the
SNR increases as ρ increases, which is a clear indication that
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Figure 2: SNR for various ρ .

competitive hybridization is a critical and desired component
for the performance of the proposed system.

To find the SNR as the database size increases the above
experiment was repeated but the size of the database (M) was
increased at each iteration. Specifically, the goal was to ver-
ify the validity of Eq. 26.

Assuming a uniform distribution Eq. 27 becomes

lim
M→∞

SNR(wC
14) =

17
∑

j=11
K14 j

10
∑
j=0

K14 j +
31
∑

j=18
K14 j

. (34)

In Fig. 3 the SNR of a database of size M, where M =
1, . . . , 1010 for ρ = 100,10,1,0.1, 0.01, is shown. With the
dashed line the value of SNR(wC

14)∞ = 3.2681 · 1011 is also
shown. It can be seen that for large M, the bound at infinity
can be achieved independently of the value of ρ . Further-
more, it is observed that as long as the query concentration
is kept in dilute, i.e., ρ > 1, the performance of the database
is very close to the maximum achievable SNR. The graph
also hints at an estimate of ρ that should be relative to the
database size. As a rule of thumb, therefore, ρ = 1 should
be adequate to achieve good performance for databases with
M > 100.

6. CONCLUSION

In this paper a framework to simulate single query situations
was presented. The kinetic analysis and formulation allows
for numerical solutions, as well as approximate solutions un-
der certain conditions. When approximations are utilized, it
was shown that the SNR of a DNA database is upper bounded
by the SNR of an infinitely large DNA database that has the
same source distribution. A number of simulation results
were presented that verify and support the claims.

In terms of applications of interest to the life sciences
community, the proposed simulation framework can be used
to simulate and optimize laboratory protocols such as poly-
merase chain reaction (PCR), primer and oligo design, mi-
croarray oligo design, and microarray simulations. For ex-
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Figure 3: SNR as a function of database size M, for various
ρ . The upper bound SNR(wC

14)∞ is plotted as a dashed line
for comparison.

ample, the concentration ratios expression of Eq. 21 can be
used to find candidate loci of genes for microarray probe de-
sign and PCR primer design.
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