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Abstract

We provide a detailed analysis of a generalized proportional growth model

(GPGM) of innovation and corporate dynamics that encompasses the Gibrat’s

Law of Proportionate Effect and the Simon growth process as particular in-

stances. The predictions of the model are derived in terms of (i) firm size

distribution, (ii) the distribution of firm growth rates, and (iii-iv) the rela-

tionships between firm size and the mean and variance of firm growth rates.

We test the model against data from the worldwide pharmaceutical industry

and find its predictions to be in good agreement with empirical evidence on

all four dimensions.
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1 Introduction

Empirically observed firm size distributions are formed as an outcome of the un-

derlying firm dynamics involving entry of new firms, innovation, new product

launches, growth, mergers, acquisitions, spin-outs, decline and exit. Several mod-

els have been proposed so far in the literature to account for these dynamics and

thus explain the mechanisms behind the observed industry structure (Gibrat 1931,

Kalecki 1945, Steindl 1965, Ijiri & Simon 1977, Jovanovic 1982, Hopenhayn 1992,

Sutton 1998, Klette & Kortum 2004, Fu et al. 2005, Klepper & Thompson 2006,

Bottazzi & Secchi 2006, Luttmer 2007, Rossi-Hansberg & Wright 2007). Most of

them referred either to the so-called Gibrat’s Law of Proportionate Effect (Gibrat

1931) or to the Simon growth process (Ijiri & Simon 1977) as useful benchmark

cases (Sutton 1997).

The Gibrat’s Law states that the expected value of a firm’s growth rate is in-

dependent of its size, and is probably the simplest available mechanism that leads

to a lognormal distribution of firm sizes. Simon and colleagues introduced, on the

other hand, an “urn” scheme similar to the one originally proposed by Yule (1925):

new business opportunities (balls) are assigned there to firms (urns). Incumbent

firms are then assumed to capture randomly a sequence of independent “oppor-

tunities” which arise over time, each of unitary size, with a probability that is

proportional to the firm’s size; and there is also a constant probability that a new

opportunity is assigned to a start-up firm. As opposed to the Gibrat model, the

Simon growth process converges to a Pareto firm size distribution. Several other,

more complex models of proportional growth have also been subsequently intro-

duced in economics and finance (Sutton 1997, Gabaix 1999, Mitzenmacher 2004,

De Wit 2005, Gabaix 2009). In most of them, the Pareto distribution is compared

to an alternative represented by the lognormal distribution.

Viewed from an empirical perspective, it is however difficult to determine unam-

biguously whether the true firm size distributions are more consistent with the log-

normal or the Pareto shape, especially in the upper tail. The debate on the shape

of the firm size distribution has nevertheless intensified in the last decade (Sutton

1998, Gabaix 1999, Axtell 2001, Eeckhout 2004, Levy 2009, Eeckhout 2009) and a

number of novel approaches have been proposed to discriminate among candidate
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distributions and to establish the length of the Pareto upper tail (Clauset et al.

2009, Malevergne et al. 2009, Bee et al. 2011). However, since multiple gener-

ative processes may lead to the same firm size distribution and the Pareto and

lognormal distributions are similar in the upper tail, no discriminatory evidence

has been presented so far regarding the dynamics behind the observed firm size

distributions.

The predictions of firm growth models should be tested on the basis of multiple

stylized facts, though (Brock 1999, Klette & Kortum 2004, Klepper & Thompson

2006). In the literature, a set of empirical regularities has been repeatedly observed

but – to our knowledge – rarely put together so far (Sutton 1997, Caves 1998, Coad

2009):

(1) The size distribution of firms is highly skewed. Gibrat showed that the size

distribution of establishments is approximately lognormal for a broad range

of data (Gibrat 1931, Sutton 1997). Simon and co-workers, on the other

hand, argued that the observed size distributions are well approximated by a

Pareto distribution, at least in the upper tail (Simon & Bonini 1958, Ijiri &

Simon 1977). While the exact shape of the size distribution is still debated,

the Pareto and lognormal distributions are typically retained as useful bench-

marks (Hall 1987, Stanley et al. 1995, Axtell 2001, Cabral & Mata 2003,

Marsili 2005, Luttmer 2007, Growiec et al. 2008).

(2) The growth rate distribution is not Gaussian but “tent-shaped” in the vicinity

of the mean growth rate (Stanley et al. 1996, Bottazzi et al. 2001, Bottazzi &

Secchi 2003, Fu et al. 2005). By looking at the entire distribution, Fu et al.

(2005) have also documented the rare events of extremely large positive and

negative growth shocks, thanks to which the firm growth rate distribution

has power-law tails.

(3) Smaller firms have a lower probability of survival, but those that survive

tend to grow faster than larger firms. Among larger firms, growth rates are

unrelated to past growth or to firm size (Mansfield 1962, Evans 1987, Hall

1987, Dunne et al. 1989, Rossi-Hansberg & Wright 2007).

(4) The variance of growth rates is systematically higher for smaller firms (Hymer
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& Pashigian 1962, Mansfield 1962, Evans 1987). Recently, it has been also

found that the variance of firms’ growth rates does decay as a power-law with

size, with a power of about 1/5 (Stanley et al. 1996, Sutton 2002, Riccaboni

et al. 2008, Gabaix 2011).

Viewed from the theoretical perspective, business firm growth is both the out-

come of a continuous growth process at the level of products, perhaps including

stochastic fluctuations à la Gibrat, as well as an outcome of capturing new business

opportunities thanks to innovation, which can be modeled à la Simon. Innovation

may lead both to new product launches as well as to opening new product lines,

divisions, subsidiaries and plants. Firm size dynamics are also largely shaped by

managerial reorganizations, mergers and acquisitions. Therefore, instead of con-

trasting alternative generative processes, in this article we develop a more general

framework that provides an unifying explanation for the growth of business firms

based on the number and size distribution of their constituent units, i.e., products,

submarkets, plants or divisions (Bottazzi et al. 2001, Sutton 2002, Klette & Ko-

rtum 2004, De Fabritiis et al. 2003, Klepper & Thompson 2006, Fu et al. 2005).

Specifically, we present a model of proportional growth in both the number of units

and their size, from which we draw some general implications on the mechanisms

which sustain business firm growth and shape the resulting firm size distributions.

The idea to decompose firms into subunits has already been the subject of some

recent theorizing about industry evolution (Sutton 1998, Klette & Kortum 2004,

Klepper & Thompson 2006). In particular, firms in the same industry can be dif-

ferentiated according to technology they use, the products they sell, the customer

segment they target and the geographic area in which they operate. Sutton (1998)

and Klepper & Thompson (2006) call these different activities “submarkets”. In

this article, we refer to a somewhat more general notion of business “units” in-

stead, though, interpreted as independent submarkets. To justify this, note that,

as argued in Sutton (1998), most markets are composed of various sets of prod-

ucts, each of which satisfies different needs and requires distinct R&D efforts and

technical know-how. Thus firms diversify their activities across submarkets even

within a given market. Keeping this in mind, Sutton (1998) defines submarkets

as independent groups of products on the demand side, or breaks in the chain of

substitutes, but allows them to be interdependent on the R&D side. Independent

4



submarkets are in turn such that also the R&D activities are independent across

them. In this article, we shall define business “units” as independent submarkets

in the latter sense. Thus, according to our definition, a business unit is an inde-

pendent subset of firm activities both on the demand side (e.g., substitution) and

the supply side (e.g., scope economies in R&D).

Klette & Kortum (2004) have developed a similar model where each firm is

defined as a portfolio of products. Just like in the Sutton model, by catching a

new business opportunity, the innovator captures the whole market for a given

product there. Klepper & Thompson (2006) also model the evolution of a given

market by looking at a population of firms, each of which grows over time by taking

up and losing a sequence of discrete investment opportunities. The framework

discussed in the current article shares all these properties. Moreover, as in Bottazzi

& Secchi (2006) we do not consider the size of new business opportunities as fixed;

in our model, each business unit undergoes an independent Gibrat growth process

whereas in Bottazzi & Secchi (2006) a business opportunity is any event (i.e. an

innovation, market shock, managerial reorganization) that conveys a set of growth

microshocks to the firm.1

To the best of our knowledge, all the firm growth models in the literature so

far have failed in accounting for at least one of the stylized facts listed above and

the variety of industry structures observed across different market settings. We

hope that the current article will fill this gap.

The contribution of the current article to the literature is thus twofold. First,

we demonstrate that the model discussed herein is the first one ever put forward in

literature to be in good agreement with all four aforementioned empirical “stylized

facts”. Secondly, we are also the first to derive formally the predictions of the model

on all four considered dimensions for the whole range of industry setups covered by

the model. Given the large variety of obtained outcomes, these theoretical results

are useful for identifying the plausible generating processes behind the dynamics of

any industry, based on its observed summary characteristics such as the firm size

distribution, growth rate distribution, and the relationship between innovation,

1When specified in continuous time, the Gibrat’s growth process is a geometric Brownian

motion. The Black-Scholes theory of option pricing also assumes a geometric Brownian motion

of stock prices. Thus in our model firms can be seen as portfolios of investments in submarkets.
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growth, and firm size.

The predictions of the model will be tested in the context of the worldwide

pharmaceutical industry, which is a textbook example of an industry consisting

of many independent submarkets (Sutton 1998, Matraves 1999). We shall exploit

a unique dataset on yearly sales of almost one million pharmaceutical products

marketed by more that 7 thousand firms in 1994-2008. Information is available

both at the disaggregate level of product sales, as well as in a re-aggregated form,

where each product is assigned to the firm that commercialized it. According to

our model, if the market is composed of many independent submarkets such as

in the case of pharmaceuticals, the firm size distribution should have a lognormal

body and a Pareto upper tail. Moreover, the distribution of firm growth rates

should be Laplace in the center, but with power law tails. As for the size-variance

relationship, in line with the predictions of our model, the data feature a slow

crossover between the two limiting cases of Gibrat and Simon growth processes.

Our empirical tests are based on the dataset from the pharmaceutical indus-

try, where the assumption of submarket independence is particularly well justified,

but they are readily generalizable to other sectors of the economy as well. More

generally, in industries where each firm is a portfolio of many independent and rel-

atively stable units, the model predicts that the Simon benchmark should be more

appropriate than the Gibrat’s one. Conversely, when firms consist of correlated

and highly unstable units, the diversification process does not work effectively and

the Gibrat benchmark should be more appropriate. Therefore, our model can be

used to discriminate among plausible generating processes in different industries,

in the same spirit as in Sutton (1998).

The remainder of the paper is structured as follows. Section 2 describes the

theoretical framework. Section 3 derives the predictions of the model under differ-

ent regimes of innovation and growth. Section 4 tests the model against the data

from the pharmaceutical industry. Section 5 summarizes our main findings and

concludes.
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2 Theoretical framework

In this section we present the key assumptions behind the Generalized Proportional

Growth model (henceforth GPGM), whose selected properties have been analyzed

previously by Fu et al. (2005) and Growiec et al. (2008). The GPGM is a stochastic

framework that includes the Gibrat’s proportional growth model and the Simon

preferential attachment growth process as particular instances and can account

for the empirically observed shapes of size and growth distributions as well as the

real-world size-mean growth and size-variance (scaling) relationships.

The model features proportional growth at the level of both number and size of

the firm business units. Business firms are viewed as economic entities consisting

of a random number of units that evolve independently of one another.2

Two key sets of assumptions in the model are:

- the number of units in a firm grows in proportion to its existing number of

units (the Simon growth process);

- the size of each unit grows in proportion to its size, independently of other

units (the Gibrat growth process).

Formally, the first set of assumptions is written as:

(1) Each firm α consists of Kα(t) units. At time t = 0 there are N(0) firms of

unitary size. This gives a total of n(0) = N(0) units in the initial period. At

each moment in time, there is a constant arrival rate µ of new units, and a

constant destruction rate λ. The net arrival rate of new units ψ ≡ µ − λ is

assumed to be positive. The number of units at time t is thus n(t) = n(0)+ψt.

Without loss of generality, we normalize ψ to unity.

(2) With birth probability b ∈ [0, 1], this new unit is assigned to a new firm.

With probability 1 − b, it is assigned to an existing firm α with probability

Pα = (1− b)Kα(t)/n(t).

The first set of assumptions should be interpreted in the following way. First

of all, larger incumbent firms – that is, those having more units – can afford to

2See also Ijiri & Simon (1977), Sutton (1997), De Fabritiis et al. (2003).
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finance larger investments in R&D. Hence, these firms should be, on average, more

innovative and capture more new business opportunities resulting, for instance, in

a larger flow of blueprints of new products which can be sold to the market. Even

in a case where innovation is done outside of the firms present in the considered

submarket, larger firms would still remain in a favorable position to grab the oppor-

tunities arriving from universities, the public sector, and other R&D institutions

because of their larger budgets (Klette & Kortum 2004).

More specifically, assuming proportional growth in the number of units per

firm means that we rule out all possible comparative advantage, or equivalently,

that we impose constant returns to scale in the R&D sector.3 Assuming positive

entry (b > 0) implies in turn that some positive percentage of total R&D output

comes from the outside of the firms present in the market. When an innovator not

affiliated with any of these companies is successful, she starts up a new firm which

initially consists of a single unit selling this freshly innovated product, but later,

it may as well grow and sell more products.

We do not model firm exit explicitly here, but nevertheless we can still say

that our parameter b captures the net entry rate – entry minus exit – which, in

a growing economy, ought to be positive over the long run. One limitation of

this simplification is that the model can account neither for firm turnover nor for

the expected survival time of a firm. It is implicit that all firms live forever here

(although some of them may do very badly).

The second set of assumptions in the model is:

(3) At time t, each firm α has Kα(t) units of size ξi(t), i = 1, 2, ...Kα(t) where

Kα and ξi > 0 are independent random variables. At time t = 0, the sizes of

all units are equal, ξi(0) = 1 for all i.

(4) At time t + 1, the size of each unit is decreased or increased by a random

factor ηi(t) > 0 so that

ξi(t+ 1) = ξi(t) ηi(t), (1)

3Sutton (1998) generalizes the Simon’s model considering the case in which the probability

that next opportunity is filled by any currently active firm is nondecreasing in the firm size.

8



where ηi(t), the growth factor of unit i, is a random variable that is inde-

pendent of all other ηi’s and ξi’s. It is assumed that E ln ηi(t) ≡ mη and

V ar(ln ηi(t)) = E(ln ηi(t))
2 −m2

η ≡ Vη.

(5) The size of every new unit arriving at time t is drawn randomly from the

distribution of unit sizes ξi(t). Its expected size is denoted as ξ̄(t).

A few things must be mentioned about the second set of assumptions. First,

by assuming the sizes of units to fluctuate independently of each other, we imply

that each unit occupies a separate market niche.4 Empirical evidence suggests

that the variance of demand shifts at the unit level (Vη) should be substantial.

Second, by requiring the fluctuations to have a purely multiplicative character, we

assume that demand shifts affect all units proportionately and that the variance

of their growth rate does not depend on their size. Third, by assuming that units

cannot move between firms, we imply the existence of underlying organization

capital necessary for production (Luttmer 2010), created upon starting up a firm,

and whose transfer between firms is too costly to occur. Finally, the framework

requires also that increases in size of existing units are independent of arrivals of

new units. The average size and number of units within a firm are assumed to be

independent.

The economic rationale behind this set of assumptions is the following. Firstly,

in a growing economy, one should expect the average net growth rate of unit sales

to be positive, in line with the macroeconomic “stylized facts”. This we capture

by assuming mη ≥ 0. Nonetheless, this does not preclude the Schumpeterian

motive of creative destruction, an obsolescence effect, or the existence of product

life-cycles.

Secondly, the assumption that newly arriving units are, on average, propor-

tional in size to the already existing units, is meant to capture the disembodied

component of technical change. If the overall rate of technical progress is positive,

as it is if mη > 0, then it is natural to expect that not only existing units, but

also newly arriving opportunities will benefit from it. Otherwise, new units would

become increasingly smaller in proportion to the established ones, and the aver-

age age of units would become the crucial factor behind firm size – an assumption

4Sutton (1998) calls this case the “island” model.
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which is at odds with evidence, and also particularly questionable in a model which

abstracts from firm and unit exit.

Despite the richness of the dynamics implied by the GPGM framework, it also

has a few notable limitations. They are a consequence of the simplifying character

of our above assumptions, thanks to which it remains analytically tractable. First

of all, by assuming that units are attached to firms forever, we rule out the possi-

bility of competition within independent submarkets. A case like ours could arise,

e.g., if every product was fully protected by a patent (at it is, to a large but not full

extent, in the pharmaceutical industry), but it cannot describe non-monopolistic

submarkets where different suppliers of equivalent products compete for consumers

with quantity and prices.

Secondly, the GPGM framework does not allow for market selection, i.e., it

does not feature any mechanism where production of the least successful products

would be discontinued, and where producers of a single (or a few) unsuccessful

products would be forced to exit. In reality, however, this mechanism could provide

a partial explanation to the observed exceptionally high volatility of firms with a

single product.

Thirdly, this version of the model does not capture the general life-cycle pat-

terns of products; instead, unit sizes are allowed to vary according to a scale-free

multiplicative process, irrespective of the unit’s age.

Fourthly, the model is not stable, in the sense of providing a stationary firm size

and firm growth rate distribution with parameters that would be constant across

time. Instead, it describes a growing economy; furthermore, due to the Gibrat

process at the level of units, this economy is growing not only in its mean, but also

in variance. In Appendix A, we put forward a modification of the GPGM, guaran-

teeing that it would deliver stationary firm size and growth rate distributions. The

stabilization device used there builds primarily upon the results of Kalecki (1945)

and a few other contributions, summarized by De Wit (2005) and Luttmer (2010).

Unfortunately, it no longer features proportional growth at the level of units, which

renders it less analytically tractable. A full analysis of such an extended model is

thus clearly beyond the scope of the current article. The size–mean growth rate

relationship is also affected by this change, and it is not clear which of the two

setups should be preferred based on the trends observed in empirical data.
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Keeping these limitations in mind, in the following section we shall derive the

predictions of our model with respect to:

(1) the size distribution of firms P (S); where the size of each firm is defined as

Sα(t) ≡
∑Kα(t)

i=1 ξi(t);

(2) the distribution of firm growth rates P (g) defined as gα ≡ ln
(
Sα(t+1)
Sα(t)

)
;

(3) the size-mean growth rate relationship, summarized by the shape of E(g|S)
viewed as a function of S;

(4) the size-variance relationship, summarized by the parameter β in the power-

law relationship of form σ(g|S) ∝ S−β.

We proceed in a systematic way. First, we list all the sub-cases of the model,

each of which implies a qualitatively different mode of its behavior, and then

study these cases consecutively. The cases singled out there are delineated by the

assumptions on:

• the entry regime of new business opportunities: ψ = 0 or ψ > 0;

• the entry regime of firms: if b = 0 then all new opportunities are captured

by existing firms, whereas with b ∈ (0, 1) there is a nonzero probability that

a new opportunity will assigned to a new start-up firm;

• the volatility of the unit growth rate: Vη > 0 allows the Gibrat’s mechanism

of proportional growth to operate at the unit level; whereas Vη = 0 switches

it off, implying constant growth in unit sizes, or keeping unit sizes constant.

In the latter case, the model boils down to the Simon urn model;

• the time horizon of the growth process: when it is infinite then we look at

the limit distribution, otherwise, it is stopped at a finite time.

For every special case of the GPGM, we derive the predictions relevant for the

stylized facts (1)–(4), presented in the introduction. We refer to already known

results wherever possible.
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3 Results

Before turning to the key results for our GPGM model, let us first sort out the

trivial case where there is no entry of firms and units and no variance of the shocks

affecting sales of business units (b = ψ = Vη = 0). In this case the initial one-

point size distribution of firms Kα(0) is maintained across time and the growth

rate distribution is degenerate; all firms grow at the same rate mη ≥ 0. An equally

trivial case follows when we impose b = 1 and ψ > 0, which is equivalent to saying

that each new unit goes to a new firm. If there is no variability in the unit growth

rates, then again, the size distribution is a one-point distribution at all times t and

each firm has the same size etmη . The growth rate distribution is degenerate as well:

all firms grow at a rate mη. Because of the degenerate growth rate distribution,

the size-variance relationship cannot be calculated in both cases.

Much more interesting are the cases where the size of existing units is allowed to

vary (Vη > 0) and where both existing and new start-up firms innovate, capturing

new business opportunities and thus opening up new units (ψ > 0). We shall first

analyze the case of pure proportional growth in the size of units without innovation

(the Gibrat case) and the case of growth in the number of units of a given size

(the Simon case). Finally we will consider the GPGM in which both the Gibrat

and the Simon growth processes are simultaneously at work.

3.1 The Gibrat case

In the case of a pure Gibrat growth process, neither new units nor new firms

enter the market, but sales of each unit fluctuate idiosyncratically over time with

a positive variance (b = ψ = 0 and Vη > 0).

Since each firm consists of exactly one unit, an application of the Central

Limit Theorem to the logarithm of unit sizes yields the prediction of the firm

size distribution approaching the lognormal in the limit of t → ∞, regardless of

the actual distribution of the growth rates ln ηi (Gibrat 1931, Kalecki 1945). Since

due to the absence of new business opportunities, each firm has a single unit, the

size distribution of firms is the exactly same as the size distribution of units: it is

log-normal, P (S) = P (ξi). The growth rate distribution, on the other hand, is the

same as the distribution of ln ηi and there is no force capable of altering this over
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time.

The size-mean growth rate and size-variance relationships found for this case

is an important benchmark for further comparisons: irrespective of firm size, the

mean of its growth rate is constant at E(g|S) = Eg = mη, and variance of its

growth rate is constant at σ2(g|S) = σ2(g) = Vη. Thus, the parameter β in the

relationship of form σ(g|S) ∝ S−β is zero. As we shall see shortly, in all other

cases of the model, β will be positive.

A very similar case, with exactly the same results as for the pure Gibrat process,

is obtained when arrivals of new units are allowed, but each new opportunity is

assigned to a new firm (b = 1, ψ > 0), and there is variability at the level of unit

sizes, with variance Vη.
5

3.2 The Simon growth process without firm entry

When new business opportunities appear but they are all captured by the initially

existing firms (b = 0, ψ > 0), and when all units grow uniformly (Vη = 0), with

entering units being of the same size as the pre-existing ones – then the size of

the representative unit at t is etmη and we are in the case of an urn scheme with

a fixed number of bins. Such schemes have been analyzed, among others, by Ijiri

& Simon (1977), De Vany & Walls (1996), Bottazzi & Secchi (2006).6 When

t → ∞, the size distribution of firms (having the same shape as the distribution

of the number of units per firm since S ∝ K in the current case) converges to a

geometric distribution (Fu et al. 2005):

P (S) =
1

κetmη − 1

(
1− 1

κetmη

)S
≈ 1

κetmη
e
− S

κetmη , (2)

where κ = κ(t) ≡
(
N(0)+t
N(0)

)
is the average number of independent units per firm

at time t. As t→ ∞, the average size of a firm κetmη increases exponentially with

time unless mη = 0 when it increases only linearly with time.

5If one relaxes the assumption that new units are created at each time step and assumes a

constant probability of arrival of new business opportunities over time instead, then Reed (2001)

has shown that under a finite time horizon, the business size distribution will be Double Pareto

and the growth distribution will be Laplace. See also Kotz et al. (2001), Bottazzi & Secchi (2006).
6Some authors refer to this case as the Bose-Einstein urn scheme. See also Feller (1957).
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Upon the use of a continuous limit approximation – made in order to attain

comparability with other cases considered in this paper – the original geometric

distribution derived in (2) becomes an exponential distribution.

If mη > 0 then the growth rate distribution of units (and hence firms, since the

influx of new units can be ignored in the limit) at t → ∞ is degenerate: all units

grow at the same rate. If mη = 0 then, due to a different argument, the growth

rate will still tend to a degenerate distribution, this time concentrated in zero. The

argument is based on the fact that all firms’ sizes will tend to infinity with time

if no firm entry is allowed. Thus, expected growth rate given by (1− b)/n(t) will

tend to zero.

The size-variance relationship is determined by the relationship between the

variance of firms’ growth rates and the number of their units, K. If mη = 0

(units are of constant unitary size) then variance scales with size as 1/K implying

β = 1/2. To see this, note that a firm with K(t) units at time t will have K(t +

1) = K(t) + 1 units at t + 1 with probability K/n(t) (proportional growth) and

K(t+1) = K(t) units with probability 1−K/n(t). Hence, the growth rate of this

firm is:

g(t) =

 1
K

with probability K/n(t),

0 with probability 1−K/n(t).
(3)

It follows that the variance σ2(g|K) = 1
Kn(t)

− 1
n(t)2

∝ 1
K

provided that n(t) is large

enough (which is for sure the case when t→ ∞).

If, on the other hand, mη > 0, then the exponential growth in unit sizes will,

over time, dominate the total size of the firm and the influx of new units will only

have a negligible impact on its size. In such case, we would have a degenerate

growth distribution and the size-variance relationship could not be calculated.

Upon stopping the Simon growth process without firm entry at a finite time

t, we observe the following differences with respect to the results derived above.

First, due to the finite-time truncation, the size distribution might have not fully

converged to the exponential distribution and some relicts of the initial firm size

may still be visible. Second, the growth rate distribution becomes a discrete distri-

bution with a finite number of atoms,7 with mean slightly above mη. This is due to

the fact that at any finite time t, the impact of influx of new units to firms cannot

7By an atom we mean an isolated point where the Cumulative Distribution Function (CDF)
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be completely ignored, as it is the case in the limit t→ ∞. The size–mean growth

rate relationship is still flat, and the size–variance relationship is still captured by

the scaling parameter β = 1/2. Last three results are easily obtained by inserting

b = 0 into the derivations done for the more general case of the Simon growth

process with firm entry, discussed below.

3.3 The Simon growth process with firm entry

The more sophisticated firm growth model due to Ijiri & Simon (1977), building

on the early contribution of Yule (1925), allows for net entry of new firms into the

market, b ∈ (0, 1) with ψ > 0 and Vη = 0. This model is thus also a special case

of the GPGM. First, we shall deal with the limiting case of t → ∞, in which the

dynamic system at hand has been given infinite time for evolution. In this case,

the distribution of the number of units per firm converges to the Pareto (power

law) distribution with the exponent 1/(1− b) + 1 > 2 (Fu et al. 2005):

P (K) =

(
1

K

) 1
1−b

+1 ∫ K

0

e−yy
1

1−bdy ∼
(

1

K

) 1
1−b

+1

, (4)

which simplifies to P (K) = 1
K2 (1− (K + 1)e−K) ∼ 1/K2 for b→ 0+.

Since there is no randomness at the unit level, the size distribution P (S) is

very similar to P (K). It is given by

P (S) = e
tmη
1−b

(
1

S

) 1
1−b

+1 ∫ Se−tmη

0

e−yy
1

1−bdy ∼
(
1

S

) 1
1−b

+1

, (5)

i.e. it follows an approximate power law with an exponent 1/(1− b) + 1.

As far as the growth rate distribution, the size-mean growth and size-variance

relationships are concerned, the current situation follows closely the lines of the

Simon model with no firm entry. Again, ifmη > 0 then the growth rate distribution

becomes a one-point distribution – the growth rate of every firm converges to

ḡ = mη, regardless of its size – and so in the limit, the scaling relationship cannot be

calculated. Accordingly, if mη = 0 then the scaling relationship is still summarized

by β = 1/2, and the growth rate distribution still tends to concentrate in zero as

t→ ∞. In the current case, however, this will not happen because of the average

of a distribution has a jump.
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size of firms going to infinity (as there is a constant inflow of small startup firms

in the current case) but rather because of the probability of getting a new unit in

the firm tending to zero as the number of firms rises towards infinity.

Let us see what changes once we relax the assumption that t → ∞. If the

process of corporate dynamics does not evolve forever but is stopped at a finite

time instead (as it must be the case in reality), we observe non-trivial truncation

effects. First of all, we find that the Pareto distribution of P (K) can only form in

infinite time; otherwise, it is truncated with an approximately exponential cutoff

(Fu et al. 2005, Yamasaki et al. 2006). More precisely, Fu et al. (2005) have shown

that when t is finite, P (K) is:

P (K) =
N(0)

N(0) + bt
Pold(K) +

bt

N(0) + bt
Pnew(K), (6)

where Pold(K) denotes the distribution of number of units in firms present in the

economy already at t = 0, and Pnew(K) denotes the respective distribution in firms

founded later. These two distributions are given by, respectively:

Pold(K) ≈ 1

κ
e−

K
κ , (7)

Pnew(K) ≈ 1 + n(0)/t

1− b

(
1

K

) 1
1−b

+1 ∫ K

K/(κ1−b)

e−yy
1

1−bdy. (8)

Remembering that κ is a function of t, we notice that both Pold(K) and Pnew(K)

are affected by the elapsing time.

Since all units are of equal size due to Vη = 0, and thus S = Ketmη , the P (S)

distribution is proportional to P (K). To compute it, it suffices to re-scale P (K)

given in (6). We conclude that the firm size distribution P (S) is Pareto with an

exponential cutoff, whereby the cutoff is obtained due to the finite-time evolution

of the considered system.8

8Yamasaki et al. (2006) have estimated the parameters of this equation using the same phar-

maceutical industry database as we use here. It turned out that the Pareto part (which is

obtained for relatively small K) has an exponent of around 2.14 (corresponding to b ≈ 0.123),

and then the cutoff part begins around K ≈ 200, where the Probability Density Function (PDF)

P (K) decays as exp(−0.0054K). Simulations carried out in that paper show that the longer is

the time t of the evolution of the considered system, the later the cutoff part begins. Neither the

Pareto exponent nor the cutoff slope are affected by the changes in t, though.
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As regards the growth rate distribution at any finite moment in time, with

mη = 0 it is equal to

P (g) =
∞∑
K=1

P (K)P (g|K), (9)

where the conditional distribution P (g|K) given by:

g(t) =

 1
K

with probability (1− b) K
n(t)

,

0 with probability 1− (1− b) K
n(t)

.
(10)

By K we denote the size (equivalent to the number of units in the current case)

of a given firm, and by n(t) we denote the total number of units in the economy

at time t. Hence, the distribution of firm growth rates is a discrete distribution

with probability mass concentrated in atoms {0} ∪ { 1
n
}Kmax

n=1 , with Kmax being the

maximum number of units per firm at time t. The probability mass associated with

each unit is equal to P (K)K/n(t) and so the distribution converges to a degenerate

distribution concentrated in zero linearly with time t. Yet due to the finite-time

truncation, the impact of the arrivals of new opportunities on the growth rate

distribution is not completely washed away.

If mη > 0, then the conditional distribution P (g|K) becomes:

g(t) =

mη + ln
(
1 + 1

K

)
with probability (1− b) K

n(t)
,

mη with probability 1− (1− b) K
n(t)

.
(11)

In result, it is a distribution that, again, has a finite number of atoms. The

probability mass associated with each unit is equal to P (K)K/n(t) and thus it

converges to the one-point distribution concentrated at mη linearly with time t.

From equation (11) we also immediately infer that at any finite time t, the

size-mean growth rate relationship is given by:

E(g|K) =

(
1− (1− b)

K

n(t)

)
mη + (1− b)

K

n(t)

(
mη + ln

(
1 +

1

K

))
≈

≈ mη +
1− b

n(t)
, (12)

and thus it is independent of K. We observe positive departures from the limit

growth ratemη if n(t) is small, though. The interpretation of this finding is natural
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– the flat relationship between E(g|K) and K comes from the assumptions of both

proportional growth at the unit level and preferential attachment of new units to

larger firms, whereas positive departures from the limit growth rate if t is small

come from the fact that initially most firms have only few units, and so capturing

new business opportunities leads to visible jumps in their size. However, as the

economy grows large, the probability that a given small firm gets such a new

business opportunity converges to zero, and in consequence its expected growth

rate goes down to mη.

Analogously to the Simon growth process without firm entry (since S ∝ K), the

size-variance relationship is approximately σ2(g|S) ∝ 1/S (implying β = 1/2) here.

There are two differences, though: first, now the relationship cannot be calculated

for any S: no firm can grow arbitrarily large in finite time; second, since the

growth rate distribution is not entirely degenerate, the scaling relationship can be

obtained also if mη > 0.

3.4 GPGM with no firm entry

In the case where new units arrive at every t (ψ > 0) and there is also variability

at the unit level (Vη > 0), the model gets substantially more complex. We shall

first deal with the case of no firm entry (b = 0). We are then observing both the

Gibrat’s proportional stochastic growth process at the unit level, giving rise to a

lognormal size distribution of units in the limit, and a proportional growth process

at the level of firms, giving rise to an exponential distribution of the number of

units per firm.

The resulting firm size distribution may be calculated using the procedure

developed in Growiec et al. (2008) as

P(S) =
∞∑
K=1

P (K)P(S|K), (13)

where P denotes the complementary CDF of a random variable and P denotes its

PDF. Taking the limit t→ ∞ and ignoring the influx of new units (which we can

do because with no entry, every firm becomes arbitrarily large with time, and thus

the effects of entry become negligible), in Growiec et al. (2008) we have found that
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the distribution of sizes S given K – a distribution of a sum of lognormal variables9

– can be approximated by a mixture of Slimane (2001)’s upper and lower bound:

P(S|K) ≈ 1−

[
Φ

(
ln(S/Kγ)− tmη√

tVη

)]K
, (14)

with γ ∈ [0, 1].10

In the end, the PDF P (S) is obtained, using P (K) from (2), and denoting

Φ

(
ln(S/Kγ)−tmη√

tVη

)
≡ h(S), as:

P (S) = −P ′(S) = h′(S)︸ ︷︷ ︸
log-normal

×
∞∑
K=1

Kh(S)K−1λe−λK︸ ︷︷ ︸
stretching factor

, (15)

where λ = 1/κ is the reciprocal of the average number of units per firm.

After some manipulations we obtain that the stretching factor in the current

case is uniformly bounded for all S:

∞∑
K=1

Kh(S)K−1λe−λK ≈ λ

h(S)

∫ ∞

1

KeK(−λ+lnh(S))dK =

= λe−λ
(

1

λ− lnh(S)
+

1

(λ− lnh(S))2

)
, (16)

and thus the stretching factor converges to 1+λ
λ
e−λ when h(S) → 1−. Hence, it

is confined within the interval (0, 1+λ
λ
e−λ). Boundedness of the stretching factor

means that the departures from the lognormal shape of the size distribution cannot

9Unfortunately, the distribution of a sum of log-normally distributed random variables cannot

be expressed in a closed analytical form (Slimane 2001).
10The parameter γ captures the distance to the upper and lower bound, within which the

complementary CDF of a sum of log-normally distributed variables must be comprised (Slimane

2001). γ = 0 is the lower bound approximation, γ = 1 is the upper bound approximation, and

γ ∈ (0, 1) captures all intermediate cases. Please note that in all the approximations, we consider

γ to be a free parameter It is implicit in Slimane (2001) that for larger variances Vη one should

expect γ to be smaller; also, for larger sizes S should γ decrease. For large firm sizes S as well as

large variances Vη, the correct approximation might be γ ≈ 0. We are however not aware of any

Monte Carlo simulations aiming at assessing the true relationship between γ and the parameters

of the underlying lognormal distributions and thus remain agnostic with respect to this point.
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be arbitrarily large. In particular, this implies that the right tail of the distribution

decays as a lognormal distribution and not as a power law.

As far as the growth rate distribution is concerned, an approximate result has

been obtained by Fu et al. (2005):

P (g) =

√
κ

2
√
2V

(
1 +

κ

2V
(g − ḡ)2

)− 3
2
, (17)

where ḡ = mη + Vη/2 and V = etVη(eVη − 1). This result is approximate in the

sense that in the course of calculating it, a Central Limit Theorem approximation

has been used: P (g|K) is approximated by a Gaussian distribution for all K while

in theory it must be the case only for sufficiently large K. This approximation is

quite precise, however, for |g − ḡ| < Vη, or if the assumed distribution of ln ηi is

close to a Gaussian.

Please note that P (g) is symmetric around the mean growth rate ḡ and that it

decays as a power law with an exponent of three (P (g) ∼ g−3).

As regards the size-mean growth rate relationship, Fu et al. (2005) have found

that as t→ ∞ (and thus n(t) → ∞ so the influx of new units can be ignored), the

mean growth rate of firms with K units and of size S converges to ḡ ≡ mη +Vη/2,

regardless of K and S. The size-mean growth relationship is thus asymptotically

flat.

The size-variance relationship will be dealt with in two steps. In the first

step, we shall derive the probability distribution of partitioning total firm size S

into K = 1, 2, 3, ... units. This means that for each given firm size S, we will

calculate the posterior probability distribution of P (K|S) using the Bayes’ law. In

the second step, we will use the law of total variance to infer from P (K|S) and

σ2(g|K) the overall size-variance relationship σ2(g|S).
Regarding the first step, the posterior distribution of partitions P (K|S) is

obtained, with the use of the results described above as well as the Slimane (2001)
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bounds approximation, as:

P (K|S) = P (S|K)P (K)

P (S)
= (18)

=

λe−λKK

[
Φ

(
ln(S/Kγ)−tmη√

tVη

)K−1
]
exp

(
− (ln(S/Kγ)−tmη)2

2tVη

)
∑∞

K=1 λe
−λKK

[
Φ

(
ln(S/Kγ)−tmη√

tVη

)K−1
]
exp

(
− (ln(S/Kγ)−tmη)2

2tVη

) .

In the second step, to calculate the size-variance relationship in the total dis-

tribution of firm sizes, we shall use (i) the partition derived just above, and (ii) the

relationship between the variance of the growth rate given σ2(g|K) and K itself.

As far as (ii) is concerned, our starting point are the results obtained in Fu et al.

(2005), signifying that this relationship should be well approximated by

σ2(g|K) =
etVη(eVη − 1)

K
≡ V

K
. (19)

Equation (19) implies a 1/K scaling relationship between variance and the number

of units, exactly the same as in the Simon case where unit sizes are deterministic.

This is however by no means a robust result and thus at least three remarks must

be made here. First, the relationship summarized in (19) must hold for large

K but need not hold for small K such as K = 1 or K = 2. Simulations of

the model show that for small K, the scaling is in fact better approximated by

σ2(g|K) ≈ 1/K2β̃ with β̃ depending on Vη (β̃ → 1/2 when Vη → 0 and β̃ → 0

when Vη → ∞). Second, empirical observations tend to suggest that already at the

level of σ2(g|K), the scaling relationship is markedly flatter than 1/K (Fu et al.

2005, Riccaboni et al. 2008). Third, the reason to use this approximation in the

analysis is that, as we shall see shortly, even with the counterfactual, too steep

1/K scaling (see also the discussion in Section 3.6), it is still likely that the overall

size-variance relationship σ2(g|S) predicted by the model will be flatter than 1/S,

in line with the empirical evidence.

Knowing the posterior distribution of partitions P (K|S), and we can obtain

the size–variance relationship by using the law of total variance,

σ2(g|S) = Eσ2(g|K,S) + σ2(E(g|K,S)), (20)
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and using the fact that E(g|K,S) = mη + Vη/2 independently of K and S so that

the second term in the sum is zero. The results are the following:

σ2(g|S) = Eσ2(g|K,S) =

=
∞∑
K=1

P (K|S)σ2(g|K,S) = (21)

=

∑∞
K̄=1 V λe

−λK

[
Φ

(
ln(S/Kγ)−tmη√

tVη

)K−1
]
exp

(
− (ln(S/Kγ)−tmη)2

2tVη

)
∑∞

K=1 λe
−λKK

[
Φ

(
ln(S/Kγ)−tmη√

tVη

)K−1
]
exp

(
− (ln(S/Kγ)−tmη)2

2tVη

) .

The infinite series in equation (21) do not have closed-form sums, but our

subsequent numerical work reveals that the underlying size-variance relationship

follows an approximate power law (σ2(g|S) ∝ S−β) and that β can, in principle,

take any value in the range (0, 1/2), depending on the values of Vη and λ. The

zero limit is converged to when the variance Vη → ∞ and the β = 1/2 limit works

well for very small variances Vη, in accordance with the β = 1/2 result we have

obtained for the case Vη = 0 (Riccaboni et al. 2008).11 The dependence of the

size-variance relationship on λ is much less pronounced than on Vη.

Upon stopping the GPGM without firm entry at a certain finite time t, we ob-

serve the following differences with respect to the results presented above. First,

as shown in numerical simulations, the firm size distribution will still carry some

relicts of the initial distribution assumed for t = 0. Second, the growth rate distri-

bution will also be somewhere in between the distribution (17) and the assumed

distribution of ln ηi (converging to the former one with time t). Third, regarding

the size–mean growth relationship, due to the fact that the impact of influx of new

units on the growth rate distribution cannot be completely ignored if time is finite,

we shall observe E(g|K,S) not as being flat, but falling with K, S, and n(t), and

converging only gradually to the limit value ḡ = mη + Vη/2. Fourth, regarding

the size–variance relationship, the scaling relationship will still be described with

β ∈ (0, 1/2). The last two results are obtained as a special case of the full GPGM

with firm entry described below, by taking b = 0.

11When Vη → ∞, γ = 0 must be used, and conversely, when Vη → 0, γ = 1 must be used.
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3.5 Full GPGM with firm entry

Allowing the entry of both new units and firms (b > 0, ψ > 0), we finally arrive at

the full GPGM which is based on a mixture of a proportional growth process with

net entry at the level of firms, and a Gibrat growth process with net entry at the

level of their constituent units (Vη > 0). As we shall see in the next section, the

predictions obtained for this case align with stylized facts (1)–(4) very well and

are also in good agreement with empirical evidence present in our dataset on the

worldwide pharmaceutical industry.

In terms of the firm size distribution, a slight generalization of the results

presented in Growiec et al. (2008) gives the following result for t→ ∞:

P (S) = −P ′(S) = h′(S)︸ ︷︷ ︸
log-normal

×
∞∑
K=1

h(S)K−1

(
1

K

) 1
1−b
∫ K

0

e−yy
1

1−bdy︸ ︷︷ ︸
stretching factor

. (22)

The stretching factor is again uniformly bounded for each given b > 0 (as it was

in the case of b = 0). However, as b → 0+, these upper bounds diverge to infinity

now, signifying that in the case of very low but positive entry, the stretching factor

can in fact be arbitrarily large, giving rise to an approximate power law decay of

P (S) for very large S.

Indeed, when h(S) → 1−, then the stretching factor is approximately equal to∑∞
K=1

(
1
K

) 1
1−b ≈

∫∞
1

(
1
x

) 1
1−b dx = 1−b

b
which tends to infinity as b→ 0+.

As far as the growth rate distribution is concerned, we shall refer to Fu et al.

(2005) as well as Buldyrev et al. (2007) for the approximate result in the case

|g − ḡ| <
√
Vη:

P (g) =
1

1− b

1√
2πV

∫ ∞

0

e−yy
1

1−b

(∫ ∞

y

e−
(g−ḡ)2K

2V K− 1
2
− 1

1−bdK

)
dy, (23)

which simplifies when b→ 0+ to

P (g) =
2V√

(g − ḡ)2 + 2V (|g − ḡ|+
√
(g − ḡ)2 + 2V )2

. (24)

The Fu growth rate distribution (24) combines a Laplace cusp at g ≈ ḡ and power-

law wings, decaying as g−3 when |g − ḡ| → ∞. In the intermediate range of g,

there is a crossover from a Laplace distribution to a power law.
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Because with stochastic fluctuations at the level of units and unit entry, the

mean firm growth rate converges to ḡ = mη+Vη/2, and thus is positive in the long

run even if mη = 0, the limiting size–mean growth rate relationship is necessarily

flat for all mη ≥ 0. Furthermore, as the total number of units in the economy

n(t) → ∞ with time, this convergence occurs uniformly for all K and S.

As far as the size-variance relationship is concerned, the situation is quite simi-

lar to the one observed with b = 0 and unit entry. The only difference is that P (K)

is now Pareto instead of being exponential. In sum, the size-variance relationship

is:

σ2(g|S) = Eσ2(g|K,S) ≈ (25)

≈

∑∞
K=1 V

(
1
K

) 1
1−b

+1

[
Φ

(
ln(S/Kγ)−tmη√

tVη

)K−1
]
exp

(
− (ln(S/Kγ)−tmη)2

2tVη

)
∑∞

K=1

(
1
K

) 1
1−b

[
Φ

(
ln(S/Kγ)−tmη√

tVη

)K−1
]
exp

(
− (ln(S/Kγ)−tmη)2

2tVη

) .

The approximation comes from using Slimane (2001) bounds for the sum of lognor-

mally distributed variables as well as replacing the true P (K) with a pure power

law distribution. The latter approximation is valid for large S, which is the range

we are particularly interested in.

Again, the infinite series defined above do not offer closed-form sums, but we

can figure out numerically what is the relationship between σ2(g|S) as defined in

(25), and S as such (see Figure 1).

Again, we see that the β slope in σ2(g|S) ∝ S−β falls with Vη. We also confirm

that β → 1/2 when Vη → 0 and β → 0 when Vη → ∞. The only difference

we find between the scaling relationships predicted within this case and the case

without firm entry is that here we see a substantial non-linearity in the plot (i.e. a

substantial departure from the power law) in the range of small sizes S, especially

when the variance Vη is large. Similar results have been obtained numerically by

Riccaboni et al. (2008).

Let us now elaborate the most complex of our cases: with both unit and firm

entry (b > 0, ψ > 0), stochastic fluctuations at the level of units (Vη > 0), and

only a finite time of evolution.
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Figure 1: The size-variance relationship as a function of Vη > 0 in GPGM with

firm entry. Assumed parameter values: mη = 0.001, b = 0.1 as well as t = 1 (in

fact, this does not matter alone, only relative to Vη) and γ = 0.95 (γ must be close

to 1 since tVη is relatively small in the example).

As far as P (K) is concerned, in such case we observe the Pareto distribution

with an exponential cutoff, summarized in (6). The overall size distribution P (S)

is quite similar to the one obtained in the case of Vη > 0 and t → ∞ and is given

by

P (S) = −P ′(S) = h′(S)︸ ︷︷ ︸
log-normal

×
∞∑
K=1

P (K)Kh(S)K−1

︸ ︷︷ ︸
stretching factor

, (26)

with P (K) as in (6). Hence, the stretching factor is in the current case a convex

combination of the stretching factors obtained for the two aforementioned cases of

(i) GPGM without firm entry, and (ii) GPGM with firm entry, as t→ ∞. The pa-

rameters of this convex combination are given by N(0)
N(0)+bt

and bt
N(0)+bt

, respectively.

The stretching factor in (26) is thus bounded, but the greater is t and the smaller

is b, the larger is its magnitude. The stretching factor may become arbitrarily
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large only when b → 0+ and t → ∞. This means that the size distribution P (S)

is essentially log-normal in the current case, with a possible approximately power

law departure for large S, but nevertheless eventually decaying as a log-normal

distribution, which is an effect of the finite-time truncation.

The growth rate distribution, P (g) =
∑∞

K=1 P (K)P (g|K), is too complex in

this case to be computed analytically. To circumvent this problem, we have carried

out a series of numerical exercises. These exercises confirm that as time t passes,

the growth rate distribution evolves gradually from P (ln ηi) at t = 0 (when all firms

have single units like in a pure Gibrat process) to a distribution exhibiting power-

law wings (when the role of “old” firms is still important and when all firms are

still relatively small in terms of K), and finally, when t → ∞, to the distribution

summarized in (23), exhibiting a Laplace cusp and power-law wings decaying as

g−3.

Needless to say, the assumptions made in relation to the distribution of ln ηi

are crucial for the shape of the growth rate distribution P (g) at any finite time t.12

As regards the dependence between firm size and its mean growth rate, finite-

time truncation enables us finally to observe significant departures from the generic

flat relationship inherent in the discussed proportional growth model. These de-

partures are especially pronounced if K, S and t (and thus n(t)) are small, because

then the increases in firm size due to catching new business opportunities are most

clearly visible. In the light of our assumptions, the expected growth rate condi-

tional on S and K is computed as:

E(g|S,K) =

(
1− (1− b)

K

n(t)

)
E

(
ln

(∑K
i=1 ξiηi
S

)∣∣∣∣S
)

+

+ (1− b)
K

n(t)
E

(
ln

(∑K
i=1 ξiηi + ξ̄(t)

S

)∣∣∣∣S
)

≈ (27)

≈
(
1− (1− b)

K

n(t)

)(
mη +

Vη
2

)
+ (1− b)

K

n(t)
ln

(
emη+

Vη
2 +

ξ̄(t)

S

)
.

12As we shall show in the following section, growth rates of individual units are distributed

according to an approximate exponential power distribution with the shape parameter ϕ ∈ (0, 1),

and thus they exhibit even sharper spikes at ḡ and fatter tails than the Laplace distribution

(Buldyrev et al. 2007). This implies that the convergence to the P (g) distribution as in (23)

should come from the direction of distributions having sharper spikes at ḡ than the Laplace.
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The formula above is always larger than ḡ = mη + Vη/2, albeit it converges to this

limiting value with K/n(t) → 0 as well as with S → ∞. A numerical quantifica-

tion of the magnitude of departures from this limit is provided in Figure 2. The

interpretation of this result is the following. First, at a given moment in time,

firm growth is faster than average growth of its constituent units only when it is

assigned a new unit of size that is not negligible in comparison to the firm’s size.

This is likely only when the probability that this firm is assigned a new unit is

not negligible, i.e. when n(t) is low. Second, as opposed to the Simon model with

Vη = 0, the current case detaches firm size from the number of units it has. For a

given n(t), high growth rates are thus particularly likely for firms that have many

small units, so that K is large compared to S. In the end, the probability of being

assigned a new unit is proportional to K, and growth rates are computed with S

in the denominator. Under the assumption S ∝ K, the size–mean growth rate

relationship becomes flat again.13

The size-variance relationship in the current case is also a mixture of the results

we have obtained in the cases: (i) GPGM without firm entry, and (ii) GPGM with

firm entry, as t → ∞. An additional complication comes from the fact that with

finite time of evolution of the system and thus a non-negligible impact of unit

entry on the firms’ mean growth rate, the second component in the law of total

variance, σ2(E(g|S,K)), is generally positive, especially if K,S and n(t) are small.

It converges to zero fast with these three variables, though. Hence, at least for

large S, the power law scaling relationship between σ2(g|S) and S holds closely also

in the current case. Numerical simulations confirm that the exponent β ∈ (0, 1/2)

depends both on the time of system evolution t and on the variance Vη.

13A selection mechanism might also be at work in real-world data, which is not accounted for in

the GPGM which abstracts from firm exit. This mechanism implies that the observed size–mean

growth relationship is downward sloping partly because it is computed conditional on survival :

if a small firm observes a negative shock, its size may fall below a certain survival threshold and

thus it may be driven out of the market, whereas a large firm will likely survive. Hence, even if

the size–mean growth rate relationship is actually flat, we may perceive it as downward sloping

in any dataset that includes surviving firms only.
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Figure 2: The size–mean growth rate relationship as a function of the number

of units per firm K and firm size S in the GPGM with firm entry and a finite

time of evolution. Assumed parameter values: mη = 0.001, Vη = 0.01, b = 0.1

as well as t = 1 (t matters only in relation to mη and Vη). These values imply

ξ̄ = et(mη+Vη/2) = 1.006.

3.6 Qualifications of the results

The results derived above have a few shortcomings. First, there is a shortage of

analytical results for the case when the evolution of the system is stopped at finite

time (t < ∞). Second, in the case with b ∈ (0, 1), ψ > 0, and Vη > 0, we rely on

imprecise approximations for the P (g|K) distribution which cannot be expressed

in a closed form for small K. These approximations are especially hurting when

firms with a small number of units K constitute a large percentage of the total

firm population. Third, since a closed form for the PDF of a random variable

which is a sum of K lognormally distributed variables does not exist either, we

rely on approximations, such as the one due to Slimane (2001), also when dealing

with the distribution P (S|K) of firm sizes. Fourth, the γ parameter, capturing the
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distance from the Slimane’s lower- and upper-bound approximations is assumed

constant in our calculations (depending only on Vη), but in reality it would rather

decrease with S. At the same time, with finite t, there are finite-size cutoffs (in the

size distributions) and crossovers from the assumed ln ηi distribution to the limit

distribution (24) with a Laplace body and power-law tails ∼ g−3.

0 1 2 3 4 5
−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

ln K

ln
 σ

2 (g
|K

)

y = − 0.54*x − 0.42

Implied β=0.27 

Simulated data
Linear fit

Figure 3: The scaling relationship between K and σ2(g|K). The 1/K scaling

fails when Vη is relatively small or when small firms make up a large share of the

distribution. In this simulation, the scaling parameter α turns out to be α = 0.27

and not 1/2. units’ growth rates ln ηi are assumed to be Laplace-distributed with

mη = 0.001 and Vη = 0.36.

Some of the problems indicated above have been resolved using simulative

methods. One of such problems is the lack of analytical results for the growth

rate distribution P (g) when the dynamic process is stopped at finite time. The

outcome has been already presented above.

Another example is the problem with the relationship between the number of

units in firms and the variance of their growth rates σ2(g|K). A Central Limit

Theorem approximation used by Fu et al. (2005) implies a 1/K scaling relation,
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apparent in (19). The equation (19) is valid only as K → ∞, however. Our

numerical simulations (see Figure 3) show that for small K, the scaling is in fact

better approximated by σ2(g|K) ≈ 1/K2β̃ with β̃ depending on Vη (β̃ → 1/2 when

Vη → 0 and β̃ → 0 when Vη → ∞). As we have also confirmed numerically, a flatter

scaling relationship σ2(g|K) implies, other things constant, a flatter size-variance

relationship σ2(g|S), i.e. a smaller β̃ implies a smaller β.

From Figure 3, we see in particular that when Vη = 0.36, the β̃ parameter

implied by the model is around 0.27, not 0.5 as suggested by (19). Within the

same parametrization, we find that the implied β exponent in the size-variance

relationship σ2(g|S) falls accordingly from 0.426 (using β̃ = 0.5) to 0.23 (using

β̃ = 0.27).

4 Empirical findings

Let us now test the predictions of our model in the context of the worldwide

pharmaceutical industry. To this end, we shall first note that the pharmaceuti-

cal industry is characterized by a positive net inflow of both new units (ψ > 0)

and firms (b > 0). Secondly, a unit is naturally defined here as a molecular entity.

New molecular entities are products developed by innovator companies, which after

undergoing clinical trials translate into drugs that cure specific diseases. The num-

ber of new molecular entities approved by the US Food and Drug Administration

and similar agencies in other countries is widely used as a measure of innovation

in pharmaceuticals (Pammolli et al. 2011). Since molecular units have different

therapeutic properties, they cannot be substituted, and thus they can be credibly

analyzed as independent submarkets (Sutton 1998). The whole pharmaceutical

industry can be viewed as an aggregation of many independent units. Moreover,

the sales of each unit are extremely volatile over the product lifecycle (Vη > 0),

especially after patent expiry (Magazzini et al. 2004). These structural features

of the pharmaceutical industry imply that the full GPGM model should apply in

this case.

The pharmaceutical industry database (PHID) at IMT Lucca, upon which we

base our analysis, is a unique dataset which records sales figures of the 916 036

drugs commercialized by 7 184 pharmaceutical firms in 21 countries from 1994 to
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Variable Model

K -.0035

(.0029)

τα .1212***

(.0120)

Time Dummies yes***

Firm Dummies yes***

N 8,092

R2 0.017

Robust standard errors in parenthesis

*** statistically significant at 1% level; ** at 5%; * at 10%

Table 1: Fixed effects panel regression of the relationship between the average

growth of firm units, the number of units and firm age, marginal effects.

2008, covering the whole size distribution of units and firms and monitoring the

flows of entry and exit at both levels. Firms capture new business opportunities

by launching new units on the market and the size of each firm is defined as the

sum of the sales of their units: Sα(t) =
∑Kα(t)

i=1 ξi(t) = 〈ξα(t)〉Kα(t) where 〈ξα(t)〉
is the average size of units in firm α at time t.

Before we proceed to empirical tests of implications of our model, let us first

check if assumption (3) holds. This amounts to verifying if, controlling for firm age,

the average unit size 〈ξα(t)〉 is independent from the number of units Kα(t). To

measure firm age, we use the age in years τα of the oldest molecule a firm has still

on the market at time t. Table 1 shows that the average unit size increases with

company age, but indeed does not depend on K, thus verifying our assumption.

Since the two growth processes are thus arguably independent and the cross-

correlation of growth across units is weak (Sutton 2002, Riccaboni et al. 2008), we

can now test the predictions of the model with respect to: (1) the size distribu-

tion of companies, P (S); (2) the distribution of firm growth rates, P (g); (3) the

relationship between firm size and its mean growth rate and (4) the size-variance

relationship, summarized by the parameter β in the power-law relationship of form

σ(g|S) ∝ S−β.
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Since the same dataset has been previously analyzed many times with our other

coauthors (Bottazzi et al. 2001, De Fabritiis et al. 2003, Fu et al. 2005, Yamasaki

et al. 2006, Buldyrev et al. 2007, Growiec et al. 2008, Riccaboni et al. 2008, Bee

et al. 2011), we rely on previous results whenever possible.

4.1 Size distribution

Our model predicts that if the size distribution of units is approximately lognormal,

and the distribution of units among firms P (K) is a power-law with an exponen-

tial cut-off, then the firm size distribution should be a lognormal multiplied by a

stretching factor can be arbitrarily large, giving rise to an approximate power law

decay of P (S) for very large S. By using the same data as we use here, Growiec

et al. (2008) have found that the unit distribution is indeed approximately lognor-

mal, whereas Yamasaki et al. (2006) have revealed that the P (K) is a power-law

with an exponential cut-off. Thus the firm size distribution should depict a power-

law upper tail (Growiec et al. 2008).

Several tests to detect a Pareto tail have been recently developed (Bee et al.

2011). The list of most widely applied ones includes the uniformly most powerful

unbiased (UMPU) test of the Pareto against the lognormal (Malevergne et al.

2009), the Hill test of Clauset et al. (2009) (CSN), and the maximum entropy

(ME) test due to Bee et al. (2011). The results of these tests are summarized

in Table 2. It turns out that the Pareto tail of the distribution of firm sizes

spans the top 1400 ranks (19.49%) according to the ME test, 1 200 to 1 300 for

the UMPU test (16.70% to 18.10%) and 900 for CSN (12.53%). These results

are completely different than the ones obtained at the unit level, where with ME

and CSN, the threshold is found between ranks 8 and 9 thousands (0.87% and

0.98%), and with the UMPU test, the rank is approximately equal to 300 (0.03%).

Hence, disaggregated data show that the Pareto tail is most likely confined to the

last percentile of the distribution, whereas at the firm level, it is markedly more

pronounced.

Thus we can conclude that, as shown in Growiec et al. (2008) and Bee et al.

(2011), the power-law upper tail includes at least top 12.53% of pharmaceutical

firms. On the contrary, the unit size distribution does not have a Pareto tail
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Firms UMPU CSN ME

ranks 1200-1300 900 1400

min S (USD,thousand) 4121-3529 7330 2939

% 16.70-18.10 12.53 19.42

slope n.a. .532 .601

Units UMPU CSN ME

ranks 300 8000-9000 8000-9000

min S (USD, thousand) 17686 6792-5919 6792-5919

% 0.03 0.87-0.98 0.87-0.98

slope n.a. 1.038 1.021

Table 2: UMPU, ME and CSN tests of the tail behavior of the size distribution at

the firm and unit levels.

(only up to 0.98% of the largest units could be Pareto distributed). In sum,

the predictions of our model regarding the size distribution of business firms are

strongly supported by empirical evidence.

4.2 Growth distribution

In the empirical application, the firm growth rate P (g) is defined as the yearly

growth rate of firm sales. To capture this, we use two different measures of firm

growth. The first is given by gα = ln (Sα(t+ 1)/Sα(t)). The second is g∗α =

(Sα(t+ 1)− Sα(t)) /Sα(t). The two measures are equivalent for growth rates close

to zero, which can be reasonably assumed by taking a short time period and a

fixed number of units K.

In this subsection we refer to the first measure of growth. Under this definition,

we compute the growth rate distributions for both firms and units and run a set of

maximum likelihood estimates (MLE).14 As candidate distributions we consider:

the Gaussian, Laplace, Exponential Power, and the “Fu” distribution characterized

in equation (24). The Exponential Power Distribution has the form:

P (g) =
κ

2µΓ( 1
κ
)
exp−(|g − µ|/σ)κ, (28)

14See also Buldyrev et al. (2007).
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where the parameter σ > 0 is the scale parameter, whereas κ > 0 is the shape

parameter15. By varying the exponent κ, it is possible to describe the Gaussian

as well as platikurtic and leptokurtic distributions. For κ = 2 the distribution is

Gaussian. For κ = 1 we obtain a Laplace distribution with a standard deviation

σ. The Fu distribution summarized in (24) has only one parameter, V .

Table 3 reports both the Kolmogorov-Smirnov (KS) and the Anderson-Darling

(AD) statistics for the four considered distributions. The result is that despite the

Fu distribution has only one free parameter, it outperforms the Gaussian and the

Laplace fit and it is slightly better than the three-parameter Exponential Power

Distribution in the body, while the Anderson-Darling test shows that the Expo-

nential Power Distribution provides a better fit of the tails.

Distribution µ σ κ V KS AD

Gaussian -.056 1.212 - - 19.221 n.a.

Conf. int. -.056 1.200 - -

-.058 1.224 - -

Laplace .059 .569 - - 3.777 190.080

Conf. int. .059 .561 - -

.060 .577 - -

Exponential Power .047 .148 .525 - 2.638 .054

Conf. int. .046 .135 .513 -

.047 .161 .538 -

Fu distribution - - - .555 1.845 .099

Conf. int. - - - .533

- - - .577

Table 3: Maximum Likelihood Estimates (MLE) of the 1-year firm growth distri-

bution. “Fu distribution” denotes the distribution summarized in (24) which has

a Laplace cusp and power-law wings ∼ g−3.

To better investigate the tail behavior of the growth distribution we use the Hill

estimator (Clauset et al. 2009). Table 4 shows that the growth distribution indeed

depicts power-law wings (about 6.7% of the total growth events are power-law

15We applied a non-parametric methodology to identify the robust estimator of the location

of the distributions and shifted the data prior to computing estimators presented in Table 3.
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distributed) P (g) ∼ g−3, as predicted by our model.

Tail slope xmin KS Exc. %

Positive 3.0225 2.1632 .0644 3.3934

Negative 3.0903 0.9302 .0494 3.2975

Table 4: Hill estimator of the tail behavior of the firm growth distribution P (g) ∼
g−3.

In sum, the Fu distribution provides a better fit to our data than any alternative

candidate distribution.16 Therefore we can conclude that, as predicted by our

model, the growth distribution has a Laplace body and power law wings. We have

thus shown so far that our model simultaneously accounts for the shape of the firm

size distribution and the distribution of firm growth rates.

4.3 The relationship between firm size and mean growth

rate

In this subsection, we shall measure firm growth as g∗α, for two reasons. First, we

prefer to use g∗α to facilitate comparisons with previous findings in the literature

(Mansfield 1962, Rossi-Hansberg & Wright 2007). Second, by using g∗α we can also

apply the Mansfield’s correction for firm exit and put g∗e = −1 for firms e that

leave the market.

Figure 4 illustrates the relationship between firm size and mean growth rate.

Firms are grouped into ten bins of equal number there. When considering the whole

set of pharmaceutical companies (K > 0), we find a negative relationship between

growth and size, in line with the stylized fact (3) but against the predictions of

our theory. For companies with more than three units (K > 3), growth rates are

independent of size, however, just as the GPGM implies. Since most of the small

companies have less that three units, on average small companies grow more than

large ones. To better investigate the effect of the number of units on firm growth

rates, in Table 5 we split the firms in four groups (K = 1, 2, 3 and K > 3) and

count how many of them capture new units in a given year (∆K > 0) or leave the

market.

16The Levy distribution is also ruled out since the tails decay with a power > 2.
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Figure 4: The relationship between the logarithm of firm size (S) and its mean

growth rate (g).

The average growth rate of a firm with a single unit is thus almost 50 times

bigger than the average growth rate of a company with more than three units.

Furthermore, among companies with one unit those that capture new business

opportunities grow 100 times more than others. In the pharmaceutical industry

this can happen for instance when a biotech start-up company with one molecule

in the market for a restricted population of patients launches a new blockbuster

drug.17 Rare spurs of very fast growth are thus due to a discontinuous process of

innovation-led growth through the capturing of new business opportunities.18.

Companies with one unit have also a far higher exit probability (13.17% versus

0.20% for companies with K > 3). To control for the selection bias, we compute

17For instance, MedImmune’s FluMist vaccine was first approved by the Food and Drug Ad-

ministration for a restricted population of patients in 2003. Then in 2007 a new version of the

product (CAIV-T) has been authorized for a far bigger market
18When the median growth rate is considered instead of the mean, the relationship is flat for

all K.
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Number of firms, by K and ∆K

∆K ≤ 0 ∆K > 0 Exit Total

K = 1 2388 171 388 2947

K = 2 766 109 38 913

K = 3 402 115 9 526

K > 3 1516 1534 6 3056

Percentage distribution, by K and ∆K

∆K ≤ 0 ∆K > 0 Exit Total

K = 1 81.03% 5.80% 13.17% 100%

K = 2 83.90% 11.94% 4.16% 100%

K = 3 76.43% 21.86% 1.71% 100%

K > 3 49.61% 50.20% 0.20% 100%

Average Growth Rate, by K and ∆K

∆K ≤ 0 ∆K > 0 Total Total, Exit= −1

K = 1 5.15 483.83 37.28 32.24

K = 2 0.56 9.90 1.71 1.60

K = 3 0.13 3.44 0.85 0.82

K > 3 0.07 1.33 0.70 0.69

Table 5: Average growth rates of companies by number of units (K). For the case

∆K <= 0, the growth rates after the Mansfield’s correction are: 4.28 (K = 1),

0.48 (K = 2), 0.11 (K = 3), 0.06 (K > 3).

the Mansfield’s correction. This correction only partially attenuates the selection

effect, though. Table 6 reports the complementary log-log (C-Log-Log) estimates

of the hazard probability to exit for companies with a different number of units,

average unit size, and of a different age. This analysis confirms that firms with

more units have a lower probability to exit. The average unit size has also a posi-

tive effect on survival probability, whereas firms’ age is far less significant. Though

preliminary, this result suggests that the age effect on firm survival could be me-

diated by the innovation process and the capturing of new business opportunities,

as in the Klette & Kortum (2004) model.

All in all, we find that the downward sloping relationship between firm growth
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Variable C-Log-Log C-Log-Log (RE) C-Log-Log (RE, pop. averaged)

K .4196*** .3565*** .3569***

(.0379) (.0380) (.0384)

< ξ >α .9835*** .9826*** .9827***

(.0018) (.0019) (.0019)

τα 1.044 1.178**

(.0509) (.0779)

Time Dummies no no yes

Firm Dummies no yes*** yes***

N 8201 8201 8201

Log lik. -1192.7 -1180.2 -1174.5

Robust standard errors in parenthesis

*** statistically significant at 1% level; ** at 5%; * at 10%

Table 6: Survival probability, complementary log-log regressions

and size among small firms is driven primarily by innovation and selection. Among

firms that sell more than 3 products, however, the size–mean growth rate relation-

ship is essentially flat, in line with the predictions of the model.

4.4 The variance of firm growth rates

As for the size variance relationship, our model predicts that it crucially depends

on the partition of firm sales into units. If firms have P (K) units and Vη = 0, the

Law of Large Numbers applies precisely and σ(K) ∼ K−β, where β = 1/2. On the

contrary, if each firm consists of a single unit only and Vη > 0, then the scaling

of the size–variance relationship disappears and β = 0. When both mechanisms

are at work, the speed of the crossover depends on the skewness of P (K). At one

extreme, if all companies have the same number of units, β = 0 and there is no

crossover. On the contrary, if P (K) is power-law distributed, for a wide range of

empirically plausible Vη, β is far from 1/2 and statistically different from zero.

In the pharmaceutical industry, we find the size-variance scaling coefficient β to

be ≈ 1/5 (see Figure 5). More generally, it has been found in the related literature
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Figure 5: The standard error of firm growth rates (σ) (circles), and the share of

the largest units (1/Ke) (dots) versus the size of the firm (S). The flattering of the

upper tail is due to some large companies with unusually large units. A reference

line with slope 1/5 is also reported.

that the relationship between the size and the variance of firm growth rates follows

an approximate power-law behavior σ(S) ∼ S−β(S) where S is the firm size and the

exponent β(S) ≈ 1/5 is weakly dependent on S (Stanley et al. 1996, Bottazzi et al.

2001, Sutton 2002, Riccaboni et al. 2008). Riccaboni et al. (2008) have shown how

a model of proportional growth which treats firms as classes composed of various

number of units of variable size, can explain this size–variance dependence. In

general, their model predicts that β(S) must exhibit a crossover from β(0) = 0 to

β(∞) = 1/2. As shown in Figure 5, the reason why the variance does not scale as

predicted by the Law of Large Numbers has to do with the skewed size distribution

of units in the firm’s portfolio. In fact, the size-variance relationship scales as the

share of the firm’s largest unit. These findings are in good agreement with the

implications of the GPGM framework.
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5 Summary and concluding remarks

In this article, we have provided a few important findings regarding the theoret-

ical predictions of the Generalized Proportional Growth model (GPGM) and its

empirical relevance. In the first respect, the results obtained analytically are sum-

marized briefly in Table 7. When a firm consists of exactly one unit, the GPGM

boils down to the standard Gibrat growth process leading to a lognormal size dis-

tribution of business firms. Conversely, when the size of units is fixed or grows

deterministically (Vη = 0), we get the Simon model of firm dynamics that leads

to a Pareto firm size distribution. As we gradually allow for more complexity in

the considered system, resultant size distributions, growth rate distributions, and

size-variance relationships get more pronounced as well. Most importantly, how-

ever, the case with both unit and firm entry (b ∈ (0, 1), ψ > 0), a positive variance

of multiplicative unit-specific shocks Vη, and a finite time truncation, gives a good

fit to the observed data from the pharmaceutical industry on all four considered

dimensions : the firm size distribution, the firm growth rate distribution, as well

as the size–mean growth rate and size–variance relationships. Since multiple can-

didate generative processes can explain a single stylized fact, a good explanatory

mechanism should match a larger set of empirical facts. In this light, the GPGM

discussed here has proved to be successful.
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ḡ
≡
m

η
β
=

1
/
2
o
r
n
.a
.

S
im

o
n
,
fi
n
it
e
t

b
∈

(0
,1

),
ψ
>

0
,
V
η
=

0
,
fi
n
it
e
ti
m
e

P
a
re
to
,
ex

p
cu

to
ff

a
to
m
s
→

o
n
e-
p
o
in
t

fl
a
t,

b
u
t
E
(g
)
>
ḡ
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According to our findings, the Simon model of growth in the number of busi-

ness units per firm with positive entry, combined with the Gibrat-type model of

proportional growth in units sizes, turns out to be a reliable and powerful genera-

tive mechanism able to explain a variety of findings related to corporate dynamics,

observed in microeconomic data.

More research is still needed to test the GPGM in different industries and

against other stylized facts concerning the relationship between firm size, growth,

and age. It might also be the case that due to some potential misalignments of

the model’s predictions with further characteristics of the data, the model should

be generalized or modified. Equally importantly, further work is also required to

provide sound economic microfoundations behind the stochastic assumptions of

this and related articles, in particular ones that could account for competition

within submarkets and lifecycles.

However, we believe that future research will be able to discriminate among

the growth regimes at work in different industries and countries over time only by

combining simple and general theoretical frameworks, akin to the one described in

this paper, with a rigorous empirical strategy.
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A A generalized GPGM allowing for stable firm

size and firm growth rate distributions

As we have indicated in the main text, it is possible to design a mechanism that

would guarantee that the firm size and firm growth rate distributions obtained

from the model would converge to distribution with a fixed mean and variance.

One of such possibilities consists in replacing Assumption (4) of the GPGM with

the following assumption, following the advice of Kalecki (1945):

(4’) At time t + 1, the size of each unit is raised to the power 1 − α and then

decreased or increased by a random factor ηi(t) > 0 so that

ξi(t+ 1) = (ξi(t))
1−α ηi(t), α ∈ (0, 1), (29)

where ηi(t) is a random variable that is independent of all other ηi’s and ξi’s.

It is assumed that E ln ηi(t) ≡ mη and V ar(ln ηi(t)) = E(ln ηi(t))
2−m2

η ≡ Vη.

The above equality can be alternatively interpreted as an assumption that

the size of each unit is multiplicatively affected by a random variable η̃i(t) =

(ξi(t))
−αηi(t). In such case, the mean growth rate at the level of units will no be

longer independent of their size; it will systematically decline with size instead.

The mechanism by Kalecki (1945) can be justified in terms of random exit

(Luttmer 2010). Indeed, if one augments the original assumption that the net entry

rate of units ψ with a positive probability of unit decline and exit α, due to reasons

unrelated directly to the firm’s sales (e.g., technological obsolescence), then this can

be reflected in a positive α in eq. (29). We would then see “creative destruction”

effects, absent in our original specification: the expected growth rate of units would

decline with their age, and the faster is the aging of existing units (higher α), the

higher would be the entry rate of new ones, captured by ψK = µ− λ+ α.

As far as the innovation process is concerned, thanks to which firms capture

new business opportunities and new start-up firms enter the market, it does not

generate systematic increases in variance. To obtain stationary size and growth

rate distributions, it is thus enough to de-trend the variables (De Wit 2005). This

can be achieved, e.g., by considering the distribution of number of units K relative

to the average number of units per firm, or relative to the total number of units in

the economy.
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A.1 Implications for the growth process at the level of

units

When describing the implications of the current change in assumptions, let us

begin with the growth process at the level of units, or equivalently – at the level

of firms, provided that the economy is in the pure Gibrat regime (b = 0, no unit

entry nor firm entry). We will then pass to the discussion of the pure Simon case

where no variance at unit level is allowed. These two limiting cases will provide

us with two bounds, within which the final results will be confined.

As opposed to the proportional growth case discussed in the main text, the

current growth process guarantees convergence of unit sizes over time to a station-

ary lognormal distribution with mean m = limt→∞E ln ξi(t) = mη/α and variance

V = limt→∞ V ar(ln ξi(t)) =
Vη

α(2−α) .

The distribution of unit growth rates, that is ln
(
ξi(t+1)
ξi(t)

)
= ln

(
ηi(t)

(ξi(t))α

)
, con-

verges to a distribution that is a convolution of the lognormal distribution and the

assumed distribution ln ηi. Its mean converges to zero (so that the distribution is

stable), and its variance converges to 2
2−αVη.

Thanks to the Kalecki (1945) mechanism, the size–mean growth rate distri-

bution is now negative for all unit sizes ξi, according to the functional form:

E(ln η̃i|ξi) = −α ln ξi+mη. There is thus a fixed slope implicit in this relationship,

equal to −α.
The size–variance relationship is however still flat, just like in the standard

Gibrat case, because V ar(ln η̃i|ξi) = V ar(ln ηi) when ξi is given.

A.2 Implications for the unit entry process

As far as the unit entry process is concerned, captured by the arrivals of new units

according to the Simon model, it is enough to define it in re-scaled units. To

see this, consider switching off all variation at unit level by assuming Vη = 0. If

mη = 0, the growth rate distribution converged then to a one-point distribution

concentrated at zero already in the model discussed in the main text. Ifmη > 0, on

the other hand, then it converged to a one-point distribution concentrated at the

growth rate of units, mη. Yet now, thanks to the Kalecki (1945) mechanism, the

average units size is growing at a constant rate mη but converging to mη/α over
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time according to ln ξi(t) = l̄nξ(t) = ln ξ̄(0)(1 − α)t + mη/α. Hence, the growth

rate distribution converges then to a one-point distribution concentrated at zero

also if mη > 0.

The firm size distributions summarized in (2) and (5) can be therefore also used

in the “stabilized” model, once one replaces K with K
κ(t)ξ̄(t)

. Furthermore, in the

Simon case with firm entry, the distribution of K itself converges to a stationary

Pareto distribution as t→ ∞, and ξ̄(t) → mη/α, so in that case no normalization

is necessary.

The firm growth rate distribution is naturally again a two-point distribution.

However, this time it takes the form:

g(t) =

mη − ln ξ̄(t) + ln
(
1 + 1

K

)
with probability (1− b) K

n(t)
,

mη − ln ξ̄(t) with probability 1− (1− b) K
n(t)

.
(30)

Hence, using the result l̄nξ(t) = ln ξ̄(0)(1−α)t+mη/α, we obtain that the expected

growth rate E(g|K) converges to zero linearly with t→ ∞, irrespective of K and

mη:

E(g|K) ≈ 1− b

n(t)
− ln ξ̄(0) · α(1− α)t, (31)

and so the growth rate distribution converges to a one-point distribution concen-

trated at zero. By the same token, the size–mean growth rate relationship is flat

in the Simon case.

As far as the size–variance relationship is concerned, we get:

V ar(g|K) ≈ 1− b

n(t)
· 1

K
+

2(1− b)

n(t)
ln ξ̄(0) · α(1− α)t +

(
ln ξ̄(0) · α(1− α)t

)2
,(32)

and hence V ar(g|K) ∝ 1/K, so the scaling relationship of the Simon model,

captured by β = 1/2, holds also when units evolve according to the Kalecki (1945)

process.

A.3 The range of attainable results

The results presented above indicate the range of results one could expect in the

general case:
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• The firm size distribution should be a stationary distribution being a mixture

of lognormal distributions, where the mixing distribution is either exponen-

tial or Pareto. No differences with respect to GPGM should be expected

here.

• The firm growth rate distribution should be a distribution with zero mean

and a fixed variance. Its shape will likely be similar to the one obtained for

GPGM, but we do not have proof for that.

• The size–mean growth rate relationship should be downward sloping with a

slope coefficient between −α (characterizing the size–mean growth rate rela-

tionship at the level of units) and zero (pertaining to the size–mean growth

rate relationship if Vη = 0). This is the key discrepancy between the current

specification of the model and the GPGM.

• The size–variance relationship should be characterized by the slope coefficient

β between zero (characterizing the size–variance relationship at the level

of units) and 1/2 (pertaining to the size–variance relationship if Vη = 0).

Qualitatively, no differences with respect to GPGM should be expected.
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