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Abstract Structural aspects play a key role in the model-driven development of software

systems. Effective techniques and tools must therefore be based on suitable representation

formalisms that facilitate the specification, manipulation and analysis of the structure of

models. Graphical and algebraic approaches have been shown to be very successful for such

purposes: 1) graphs offer natural a representation of topological structures, 2) algebras offer

a natural representation of compositional structures, 3) both graphs and algebras can be

manipulated in a declarative way by means of rule-based techniques, 4) they allow for a

layered presentation of models that enables compositional techniques and favours scalability.

Most of the existing approaches represent such layering in a plain manner by overlapping the

intra- and the inter-layered structure. It has been shown that some layering structures can

be conveniently represented by an explicit hierarchical structure enabling then structurally

inductive manipulations of the resulting models. Moreover, providing an inductive presentation

of the structure facilitates the compositional analysis and verification of models. In this paper

we compare and reconcile some recent approaches and synthesise them into an algebraic and

graph-based formalism for representing and manipulating models with inductively defined

hierarchical structure.
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1 Introduction

Model-driven development is a software engineering paradigm built around the

notion of model. Models are abstract descriptions of software artifacts that facilitate

understanding, master complexity and therefore have a positive impact on the pro-

ductivity, quality and cost of software development. Among the different features

of a software artifact, structure is a key one. Think for instance about the different

styles in which components in a software architecture can be linked together or or-

ganised (star, ring, tiers, etc.) or the interrelations in a class diagram. Model-driven

development requires effective techniques and tools based on suitable formalisms for

the specification and manipulation of the structure of models. Graphical and alge-

braic approaches have both been shown to be very successful for such purposes: 1)

graphs offer a visual representation of the topological structure of a model, 2) algebras
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offer a natural representation of the compositional structure, 3) both graphs and

algebras can be manipulated in a declarative way by means of rule-based techniques,

4) they allow for a layered presentation of models that enables compositional tech-

niques and favours scalability. In this paper we summarise and reconcile some recent

work [BHK+09, BBLL+10, BM08] proposing an algebraic and graph-based formalism

for representing and manipulating models with hierarchical structure. We believe that

our presentation provides evidence that it is possible to exploit the structure of models

to enhance software description and to facilitate model transformations.

Many domains exhibit an inherently hierarchical structure that can be exploited

conveniently. We mention, among others, nested components in software architec-

tures, nested sessions and transactions in business processes, nested membranes in

computational biology, and so on. A prominent example can be found in the Meta-

Object Facility1 (MOF), a de-facto standard in model-driven engineering. The MOF

defines a meta-modelling paradigm by providing a set of UML-like structural mod-

elling primitives including composition associations. Such associations are required

to satisfy certain constraints, like unique and acyclic containment, that establish a

hierarchical structure on models. However, very often such layering is represented

in a plain manner by overlapping the intra- and the inter-layered structure. For in-

stance, models are usually formalised as flat configurations (e.g. graphs) and their

manipulation is studied with tools and techniques based on term rewriting [Mes92] or

graph transformation theories [EEPT06, Roz97] that do not exploit the hierarchical

structure. In the case of MOF, models are collections of objects that may refer to

other objects through references, corresponding to flat graphs in the traditional sense.

Some of these references are typed as composition associations, whose semantics

corresponds to structural containment. In this way, models have an implicit nested

structure since some objects may contain other objects, i.e. containment references

are defined as distinguished edges in a graph, receiving a particular treatment during

graph transformations [BM08, BHM09]. On the other hand, an explicit treatment of

structural containment for specifying and transforming model-based software artifacts

is possible. As a matter of fact, some layering structures (like composition relations in

MOF) can be conveniently represented by an explicit hierarchical structure enabling

then hierarchical manipulations of the resulting models (see e.g. [BLM08, BBLL+10]).

Manfred Broy research involved hierarchical approaches in software engineering

with a particular attention to software models, see e.g. [KPSB02, KPSB04, Bro07,

Bro03, Bro09] to mention a few recent contributions. In [KPSB02, KPSB04] Manfred

introduced a novel extension to UML sequence diagrams to describe interaction

scenarios in hierarchial broadcasting architectures, and presented a methodology

that exploits those scenarios in order to derive structural and behavioural aspects

of the architecture under development. In [Bro03] Manfred studied different models

of distributed, embedded software systems focusing on the various features of such

systems such as data, states, interfaces, functionality, processes and, more relevantly,

hierarchical components. The work introduces a mathematical model that included

a means for representing abstraction and refinement relations as well as forms of

composition and modularity. In [Bro07] Manfred introduced a theory for modelling

1 http://www.omg.org/mof/



On Structured Model-Driven Transformations 3

software intensive systems. He considered two orthogonal views: the task view, which

regards the hierarchy of functions, features and services provided by the system, and

the architectural view, which focuses on the components that form the system and

their cooperation through behavioural interfaces. In [Bro09] Manfred discusses the role

of rigourous model development in software engineering, highlighting its success “on

creating models or abstractions, more close to some particular domain concepts rather

than programming, computing and algorithmic concepts” in contrast to traditional

use of formal methods, and promoting their seamless adoption.

This paper honours Manfred Broy by considering the issue of hierarchical modelling

of software artifacts, and by borrowing the production plant scenario used in some of

his papers (namely [KPSB02, KPSB04]).

A key instrument to discipline model-driven engineering is the concept of meta-

model, i.e. a sort of meta-language describing the syntax of models that allows one,

for instance, to restrict the admissible structures and patterns to be considered. Meta-

modelling the structure of software artifacts involves declaring the classes, attributes

and relations between the different entities. Types, grammars, algebras, logic and other

basic principles have been combined into suitable meta-modelling mechanisms since

the beginning of this discipline.

For instance, UML class diagrams use types to declare basic entity classes and

logical constraints to restrict their interrelations. Many formalisations have been

presented for such approaches, notably the algebraic semantics of the MOF [BM08].

On the other hand, grammar based approaches were initiated by Lé Metayer in the

field of programming languages [FL97] and further exported to architectural styles

using graph grammars [Le 98, HIM98, HM04]. This tradition has given birth to an

algebraic approach based on conditional term rewriting called ADR [BLMT08] that

has turned out to be very expressive and flexible. The most relevant application of

ADR is for the modelling and analysis of SOA architectures with UML [BHK+09].

Many engineering activities are devoted to manipulate software artifacts or to

declare their dynamics. This issue is usually known as model transformation. For what

regards the structure of models, transformations are defined at any level of a meta-

modelling hierarchy: e.g. a transformation might define an architectural reconfiguration,

a software refactoring or a language translation. Rule-based specifications have been

very successful as a declarative approach in model-driven transformations. One of the

key success factors are the solid foundations offered by rule-based machineries like

term and graph rewriting. Still, the complexity of realistic problems requires suitable

techniques to guarantee the scalability of rule-based approaches. We explain in this

paper how to exploit the hierarchical structure of models for such purpose. The main

idea is that structured models represented by terms are those that can be therefore

manipulated by means of term-rewrite techniques. In particular one can use conditional

term rewrite rules à la Meseguer [Mes92]. To coordinate and guide the manipulation of

models, one can declare rules in the style of Structural Operational Semantics [Plo04]

(SOS) and its implementation in rewriting logic [VMO06].

One interesting outcome of our work is the analysis and comparison of two different

approaches that poses the basis for their combined, synergic use. The first approach

(in the style of [BM08]) imposes a membership mechanism to classify object collections

as meta-model conformant or not. The second approach (in the style of [BHK+09]),
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instead, tries to provide directly a signature of meta-model conformant configurations.

In the end we promote the conjoint use of both approaches: from the first approach

we take the model based on collections of interrelated objects; from the second one we

inherit the explicit treatment of structural containment.

Synopsis. § 2 fixes the main notation we shall use in the rest of the paper. § 3

describes our running example, borrowed from Manfred Broy’s works. § 4 presents

a graph-based algebraic representation of models as nested object collections that

makes an explicit treatment of hierarchical structures. § 5 overviews two approaches

for meta-modelling and suggests how to conciliate them. § 6 explains rewrite rule

formats for defining model transformations. § 7 overviews some experimental results

regarding the performance of the explained styles when actually executing model

transformations. § 8 concludes the paper.

2 Preliminaries: Rewriting Logic and Maude

Our machinery heavily relies on rewriting logic [Mes92] due to its well-developed

theory, expressiveness, flexibility, generality and tool support. In particular, we will

see that our models are terms of a particular signature of object configurations. This

concept is crucial for understanding our work. Indeed, as we shall see in the rest of

the paper, meta-models become just specialisations of that signature, while model

transformations are programmed as rewrite theories over them.

A rewrite theory R is a tuple 〈Σ, E,R〉 where Σ is a signature, specifying the

basic syntax (function symbols) and type machinery (sorts, kinds and subsorting) for

terms, e.g. model descriptions; E is a set of (possibly conditional) equations, which

induce equivalence classes of terms, and (possibly conditional) membership predicates,

which refine the typing information; R is a set of (possibly conditional) rules, e.g.

model transformations.

The Maude framework [CDE+07] provides a language for describing such rewrite

theories and a tool built upon a rewrite engine for executing and analysing them. In

the rest of the paper we shall use Maude’s syntax, introducing the syntactic ingredients

as we use them.

The signature Σ and the equations E of a rewrite theory form a membership

equational theory 〈Σ, E〉, whose initial algebra is denoted by TΣ/E . Indeed, TΣ/E is

the state space of a rewrite theory, i.e. states (e.g. models) are equivalence classes of

Σ-terms modulo the least congruence induced by the axioms in E (denoted by [t]E or t

for short). Sort declarations takes the form sort S and subsorting is written subsort

S < T. For example, we can declare sorts sort Qid for quoted identifiers (which Maude

has built-in) and sort QidList for lists of identifiers and then allow a single identifier

to be seen as a list by declaring subsort Qid < QidList. Operators are declared in

Maude notation as op f : TL -> T [a] where f is the operator symbol (possibly with

mixfix notation where underscores stands for argument placeholders), TL is a (possibly

empty, blank separated) list of domain sorts, T is the sort of the co-domain, and a

is a set of equational attributes (e.g. associativity, commutativity). For example, op

nil : -> QidList declares a constant of sort QidList (for the empty list), op :

QidList QidList -> QidList [assoc id: nil] declares juxtaposition of lists (i.e.
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concatenation) as an associative operator with unit nil. We shall present a signature

Σ contaning sorts and operators for describing models as collections of attributed,

interrelated objects.

Equations that cannot be declared as equational attributes must be treated as

functions defined by a set of confluent and terminating (possibly conditional) equations

of the form ceq t = t’ if c, where where t, t’ are Σ-terms, and c is an application

condition. When the application condition is vacuous, the simpler syntax eq t = t’

can be used. For example, assuming the length operator has been defined as op len :

QidList -> Nat, then we can write its inductively defining equations as eq len(nil)

= 0 and eq len(I L) = 1 + len(L), where I is a variable of sort Qid and L is a

variable of sort QidList. Roughly, an equational rule can be applied to a term t’’ if

we find a match for t at some place in t’’ such that c holds (after the application of

the substitution induced by the match). The effect is that of substituting the matched

part with t’ (after the application of the substitution induced by the match). For

example, the term len(’a ’b ’c) reduces to 1 + len(’b ’c), then to 2 + len(’c)

and finally to 3. In our theories, object collections are seen as multisets of objects, i.e.

modulo the equational attributes for associativity, commutativity, and identity, thus

axiomatising the graph-theoretic nature of models.

A membership predicate has the form cmb t : T if c, where t is a Σ-term

of some supersort T’ of T and c is a predicate over t conditioning the membership

statement. When the application condition is vacuous, the simpler syntax mb t : T

can be used. Roughly, a membership predicate states that if we are able to match a

term t’ with t such that c holds (after the application of the substitution induced

by the match), then t’ has sort T. For example, the previous subsort declaration can

be written as the membership predicate cmb I : QidList if I : Qid. Membership

predicates provide a subtyping mechanism that we can use for defining meta-model

conformance.

Rewrite rules are of the form crl t => t’ if c, where t, t’ are Σ-terms, and

c is an application condition (a predicate on the terms involved in the rewrite, further

rewrites whose result can be reused, membership predicates, etc.). When the application

condition is vacuous, the simpler syntax rl t => t’ can be used. For example, the

rule rl I L => L I if L=/=nil is a rule for rotating the elements of a list. Matching

and rule application are similar to the case of equations with the main difference being

that rules are not required to be confluent and terminating (as they represent possibly

non-deterministic concurrent actions rather than functions). For example, the term ’a

’b ’c can rewrite to ’b ’c ’a or to ’b ’a ’c or to ’a ’c ’b, depending where the

rule is applied. Equational simplification has precedence over rule application in order

to simulate rule application modulo equational equivalence. Rewrite rules can be used

to program model transformations in a declarative way.

3 Running Example: Production Plant

We consider a running example inspired by the Product Automation case study

from [KPSB02, KPSB04]. We borrow the main ingredients of the example and adapt

them for the sake of a better illustration of our concerns. The system under study is

an autonomous transport system within a production plant. The production plant
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Fig. 1. Production plant scenario

consists of workpieces that must be processed by machine tools. Workpieces might be

subject to different processes carried out by machine tools. Both machine tools and

workpieces are distributed among the various locations of the plant, which requires

the system to transport pieces to the location of the machine tools that must operate

on them. Transportation is carried out by autonomous vehicles that negotiate with

machine tools where to deliver the workpieces. Such negotiation is supported by a

(hierarchical) broadcast system. For the sake of simplicity, we will focus on the spatial

distribution and transportation of machine tools and workpieces and we will abstract

away from vehicles and other entities involved in the actual case study. Figure 1

illustrates a configuration of the scenario in an informal way. The production plant is

physically divided into rooms or areas denoted by rounded boxes. Machine tools are

represented by gears, and workpieces by cylinders. Arrows are used to link workpieces

to the machine tool they are assigned to for the next operation.

It is worth to remark that the aim of this example is purely illustrative. It focuses

on the architectural view of a model, but our approach, of course, deals with models

in the general sense.

4 Models

This section gives a formal representation of models based on an algebra of nested object

collections, which can be understood as a particular class of attributed, hierarchical

graphs. First we summarize an algebra of object collections that is used to represent

models as flat graphs (see Figure 2). Next, we introduce nested object collections which

allows us to see models as hierarchical graphs (see Figure 3).

4.1 Models as attributed graphs

In our setting a model is a collection of attributed objects. Maude already provides a

signature for this purpose, called object-based signature [CDE+07], which we tend to

follow with slight modifications aimed to ease the presentation. Each object represents

an entity and its properties. Technically, an object is defined by its identifier (of sort

Oid), it’s class (of sort Cid) and its attributes (of sort AttSet). Objects are build with

an operation < : | > with functional type Oid Cid AttSet -> Obj. Following

Maude conventions, we shall use quoted identifiers as object identifiers. Class identifiers,

instead will be defined by ad-hoc constructors. For instance in our running example

we use the constants Room, Tool and Piece of sort Cid to denote the classes of rooms,

machine tools and workpieces, respectively.

The attributes of an object define its properties and relations to other objects.
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Fig. 2. Production plant scenario in flat representation

They are basically of two kinds: datatype attributes and association ends. Datatype

attributes take the form n: v, where n is the attribute name and v is the attribute

value. For instance, in our running example we shall consider an attribute alarm with

domain in {on,off} (sort Alarm), representing whether the room alarm is activated

or not. Similarly, we will consider an attribute state for denoting whether a machine

is ready or busy (sort State), and an attribute phase for the completion phase (here

a natural number of sort Nat, for simplicity) of a workpiece.

As an example of an attributed object, consider Figure 2 whose format is remi-

niscent of the UML notation, with boxes representing objects where the top frame

contains the object identifier and its class and the bottom frame is reserved for datatype

attributes. The room ’store2 on the right of Figure 2 is denoted in Maude syntax

with < ’store2 : Room | alarm: off >.

In a configuration, objects are interrelated. Relations between objects can be

represented in different ways. One typical approach is to use a pair of references

(called association ends in UML terminology) for each relation. So if an object o1

is in relation R with object o2 then o1 will be equipped with a reference to o2 and

vice versa. In our case this is achieved with attributes of the form ends(R): O2 and

opp(R): O1 where R indicates the relation name and O1, O2 are sets of object identifiers

(sort OidSet). Association ends of the same relation within one object are grouped

together (hence the use of identifier sets as domain of association attributes). Consider

the location containment relation rooms, used to represent the fact that a large

room can contain smaller ones. Room ’wshop2 contains the above mentioned room

’store2. Both objects are hence denoted with < ’wshop2 : Room | alarm: off

, ends(rooms): ’store2 > and < ’store2 : Room | alarm: off , opp(rooms):

’wshop2 >, respectively. Note that each association pair is graphically denoted with

an arrow in Figure 2, which goes from the first object of the relation tuple to the

second one.

Of course an object can be equipped with any number of attributes. Actually,

the attributes of an object form a set built out of singleton attributes, the empty set

(none) and union set (denoted with , ).
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Fig. 3. Production plan scenario in nested representation

Object configurations are essentially sets of objects. The sort for configurations is

called Conf and its constructors are the empty configuration (none), singleton objects

(as Obj is declared a subsort of Conf) and set union (denoted with juxtaposition).

As an example the whole configuration of Figure 2 is denoted with

< ’wshop1 : Room | alarm: off , ends(rooms): ’store1 , ends(items): ’mtool1 >

< ’mtool1 : Tool | state: ready , opp(items): ’wshop1 >

< ’store1 : Room | alarm: off , opp(rooms): ’wshop1 , ends(items): ’piece1 >

< ’piece1 : Piece | phase: 1 , opp(items): ’store1 , ends(next): ’mtool2 >

< ’wshop2 : Room | alarm: off , ends(rooms): ’store2 , ends(items): ’mtool2 >

< ’mtool2 : Tool | state: ready , opp(items): ’wshop2 , opp(next): ’piece1 >

< ’store2 : Room | alarm: off , opp(rooms): ’wshop2 >

In order to distinguish a model from the collection of objects that forms it, we

wrap configurations together into a model with operation << >> : Conf -> Model.

4.2 From flat to nested collections (and back)

The key observation now is that a prominent type of relation among objects is

structural containment (e.g. UML composition associations). To capture such concept

in an explicit way, we introduce the notion of nested object collections, taken from

[BBLL+10]. A nested object collection is realised using a very similar notation to that

for ordinary, plain collections. The idea is as simple as to allow object collections to

be the domain of attributes. We denote this third class of attributes as container

attributes. Hence, the idea is that while in a plain object collection a containment

relation r between two objects o1 and o2 is represented by attributing them with a

pair of association end attributes ends(r) and opp(r), now o2 is embedded into o1

by means of the container attribute cont(r). For instance, the example configuration

of our running example is now denoted with:

< ’wshop1 : Room | alarm: off ,

cont(items): < ’mtool1 : Tool | state: ready > ,

cont(rooms): < ’store1 : Room | alarm: off ,

cont(items): < ’piece1 : Piece | phase: 1 ,

ends(next): ’mtool2 > > >

< ’wshop2 : Room | alarm: off ,

cont(items): < ’mtool2 : Tool | state: ready , opp(next): ’piece1 >

cont(rooms): < ’store2 : Room | alarm: off > >
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A graphical illustration that makes the embedding explicit is in Figure 3. We

remark that the point is not in the visualisation of models. Indeed, our choice of

visualising flat configurations in a tree-like manner using an ordinary plain graph

(Figure 2) and nested configurations in a boxes-inside-boxes manner using a hierarchical

graph (Figure 3) is arbitrary. The point is instead in the formal notation: nested

configurations retain structural containment in the syntactic structure of terms.

The hierarchical structure of models forms a tree. The two approaches that

we have described differ essentially in the way we represent such a tree. It is not

by accident that each of the representations coincides with one of the alternative

definition of trees offered by computer scientists: as a particular class of graphs (acyclic

and connected) or as an inductively defined mathematical structure (a tree is a leaf,

or a node with some subtrees). The literature provides enough examples where one

representation is preferred over the other. Obviously, the main virtues and drawbacks

of each representation style have their major impact when it comes to definitions,

analysis, and manipulations. We postpone hence, the main discussion to the next

sections and refer to [BL09] for a generic discussion and pointers about the benefits of

expliciting the structure of graphs in software modelling.

Interestingly, flat and nested representations are in bijective correspondence, i.e.,

for each flat object collection we can obtain a unique nested collection and vice versa.

To make this more explict we outline such transformations below. We first define the

function || || that allows us to flatten a nested collection by recursively replacing

embedded objects by association ends (cf. the third equation).

ceq || objCol1 objCol2 || = || objCol1 || || objCol2 ||

if objCol1 =/= none /\ objCol2 =/= none .

eq || < oid1 : cid1 | attSet1 , cont(containerId1) : none > || =

|| < oid1 : cid1 | attSet1 > || .

eq || < oid1 : cid1 | attSet1 ,

cont(containerId1) : objCol1 < oid2 : cid2 | attSet2 > > || =

|| < oid1 : cid1 | attSet1 ,

cont(containerId1) : objCol1 ,

ends(containerId1) : oid2 > ||

|| < oid2 : cid2 | attSet2 , opp(containerId1) : oid1 > || .

eq || obj1 || = obj1 [owise] .

The inverse function [[ ]] (from flat collections to nested ones) is defined below:

eq [[ < oid1 : cid1 | attSet1 , ends(containerId1) : none > objCol2 ]] =

[[ < oid1 : cid1 | attSet1 , cont(containerId1) : none > objCol2 ]] .

ceq [[ < oid1 : cid1 | attSet1 , ends(containerId1) : (oid2 oidSet1) >

< oid2 : cid2 | attSet2 , opp(containerId1) : oid1 >

objCol2 ]] =

[[ < oid1 : cid1 | attSet1 ,

ends(containerId1) : oidSet1 ,

cont(containerId1) : < oid2 : cid2 | attSet2 > >

objCol2 ]]

if noCompositionLinkIn(attSet2) .

eq [[ objCol1 ]] = objCol1 [owise] .
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where noCompositionLinkIn is a boolean function that checks whether a configuration

is free of composition association links. Indeed, this property is exploited to ensure

that each step of the transformation embeds an already nested object, i.e. it forces a

bottom-up transformation based on the tree induced by composition association links.

Clearly, both the flattening and the nesting functions are bijective and indeed one

the inverse of the other. This means that both flat and hierarchical representations are

somehow isomorphic and we can pass from one to the other as we find more convenient

for specific applications or analyses.

5 Meta-models

We present in this section two approaches to the formalisation of the concepts of

meta-model and meta-model conformance and discuss the way each approach deals

with structural containment. We first explain what we intend under meta-model ;

roughly a formal model for describing families of models. Then we describe the first

approach (cf. [BM08]) which is roughly based on imposing a membership mechanism

to classify object collections as meta-model conformant or not. The second approach

(cf. [BHK+09]), instead, tries to provide directly a signature whose terms are all and

only meta-model conformant configurations by construction. After a discussion we

propose a conciliation of both approaches fundamentally based on the first approach

and inheriting the explicit treatment of structural containment from the second

approach.

5.1 The need of meta-models

The theories of plain and nested object collections presented in the previous section

can be considered as a sort of meta-model. However, consider the following object

configuration:

< ’wshop3 : Room | state: ready , ends(rooms): ’item3 , ’store2 >

< ’item3 : Tool | alarm: off , opp(rooms): ’wshop2 , ends(rooms): ’wshop3 >

Many inconsistencies are evident at first sight: objects with attributes of other

classes, associations with bad domain or co-domain, cyclic containment, association

ends missing, etc. But such “evidence” does not scale up to large graphs, even for expert

eyes. As in any other language, modelling languages need formal typing mechanisms to

explictly define well-formedness and tools to detect or prevent inconsistencies. This is

the main role of meta-models. In our case, since a model is any term of the object-based

signature, well-formedness is membership to a particular subsort S of Model. Next

sections introduce two approaches to define and decide membership to S: the first

one is based on membership predicates, while the second one consists on defining the

constructors of S.

5.2 Meta-models as membership equational theories refining an object-based signature

One of the most widely adopted modelling languages within the software industry

is UML. Among the various UML dialects, class diagrams provide a suitable meta-

modelling mechanism to define the structure of a software model at the very abstract

level. A class diagram declares a basic alphabet of software components (classes),

their internal properties (attributes) and their interrelations (associations). Such basic
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Fig. 4. UML Metamodel

alphabet can be decorated with further information (e.g. the cardinality of relations,

whether they are ordered or not, etc.) and equipped with further constraints expressed

in languages such as the Object Constraint Language (OCL). A similar situation is

present in many other modelling languages, e.g. in Architecture Description Languages

(ADLs), which also provide some means of defining the basic architectural building

blocks (component and connector types) and subtle architectural constraints. Even

more, meta-modelling technologies such as the Meta-Object Facility provide a language

for defining meta-models (including UML and MOF itself) based on the same idea:

a diagram of attributed entity classes, their allowed relations and some additional

constraints.

One of the basic ideas underlying the formalisation of the MOF within rewriting

logic [BM08] is the analogy between constructors/membership and alphabet/constraints.

Indeed, the signature of object collections provides a generic language to describe any

possible model. Introducing concrete class identifier constructors and attributes corre-

sponds to depicting the diagram classes with their attributes and relations. Further

constraints are specified by means of membership predicates on individual objects or

a whole model. In our case a membership predicate is of the form cmb M : S if p

where M is a Model-sorted term, S is the designated sort for meta-model conformance

and p is the predicate that characterises conformance.

Consider, for instance the class diagram of Figure 4 which acts as informal meta-

model of our running example. The formal meta-model introduces appropriate class

identifier constructors (e.g. Room), datatype attribute names (e.g. alarm) and domains

(e.g. sort Alarm with constructors on, off), and association attributes (e.g. rooms).

The conformance predicate must check the correspondence of attributes and classes

(e.g. alarm is a valid attribute for Room objects only), the domain of relations (e.g.

rooms must refer to a set of objects of class Room only) and further relation constraints

(e.g. rooms is a composition assciation as denoted by the diamond ended arrow).

The latter example of relation constraint regards one of the central issues of
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Fig. 5. Sequential composition of rooms

our work: how do we represent composition associations? Such relations represent

structural containment and are hence required to be irreflexive up to transitive closure

(to avoid self-containment) and injective (to ensure unique containers). In a plain graph

representation checking those properties amounts to verify whether the composition

graph (the graph obtained by dropping any edge not corresponding to a composition

association) forms a forest (i.e. a set of trees).

5.3 Meta-models as many-sorted algebras over an object-based signature

The approach we describe in this section stems from a tradition based on the use of

grammars to recognise program shapes (e.g. architectural styles, workflow patterns). In

particular, some authors promoted the use of graph grammars to define architectural

styles and decide style conformance [Le 98]. With the observation that a context-free

grammar can be turned into a many-sorted algebra, approaches where developed where

a meta-model is roughly provided by an algebra that allows one to build conformant

models only [BLMT08].

In terms of our signature of object collections, the idea is to define the constructors

for the sort S of conformant models. Obviously, this approach has some expressiveness

limitations (it is not always possible or convenient to define a finite signature for a given

sort) but has been proven very useful for typical model families such as client/server

architectures, workflow patterns, and network topologies. Consider for instance, that

our meta-model imposes the following constraints: rooms are flat (they do not contain

other rooms), rooms are connected together with unidirectional transportation chains

(cf. in and out relations in Figure 4), transportation chains connect all rooms in a

sequential manner, no piece has a next attribute (as operations are dictated by the

room sequence and the workpieces within each room).

Now a signature must be developed that contains one object constructor per

class to ensure a correct use of attributes and a correct domain for references. Pieces,

for example, can be constructed with operation piece : Oid Phase -> PieceObj,

defined as follows:

eq piece(oid1,phase1) = < oid1 : Piece | phase: phase1 > .

These approach hampers the use of association pairs as this would require the

related objects to be built together. Hence, relations are represented in one of the ends

only (as references) and are typically free of constraints. Composition associations

are dealt with nesting attributes as illustrated in Section 4. For instance, if we let

ItemsConf denote the sorts for configurations made of items only, the constructor for

room objects is room : Oid Alarm Oid Oid ItemsConf -> RoomObj defined as
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eq room(oid1,alarm1,oid2,oid3,items1) =

< oid1 : Room | alarm: alarm1 ,

ends(in): oid2 , ends(out): oid3 , cont(items): items1 > .

A room configuration is a sequence of rooms built using individual rooms or

a sequential composition operation ; : RoomConf RoomConf -> RoomConf (cf.

Figure 5):

eq conf1 < oid1 : Room | attSet1 , out: none > ;

< oid2 : Room | attSet2 , in: none > conf2 =

conf1 < oid1 : Room | attSet1 , out: oid2 >

< oid2 : Room | attSet2 , in: oid1 > conf2 .

Conformant models are built with RoomConf-sorted configurations only:

op << _ >> : RoomConf -> S .

5.4 Discussion: meta-model constructors or membership predicates?

Both approaches to meta-modelling share a common alphabet (the signature of object

collections) and the idea of declaring a sort S of conformant models. The main difference

is that the first approach decides membership to S by checking a set of predicates,

while the second approach defines the constructors for S.

The main advantages of the first approach are that it more suitably applies to

standard modelling technology like UML and, in particular, MOF. Indeed, even if

not discussed here the approach is reflective: there is a boxes-and-lines diagram (the

meta-meta-model called M3 in MOF) that can describe itself and is used to describe

meta-models (such as UML). This tower of meta-modelling levels is captured by the

reflection mechanism of rewriting logic [BM08] (efficiently implemented in Maude).

The second approach, in place, has a unique advantage: models are conformant by

construction, which not only spares the effort of checking meta-model constraints

but can facilitate the definition of conformance-perserving model transformations at

high-level of abstraction.

The signature of nested object collections exploits best features of both approaches,

by capturing the constraints inherent to composite aggregations with nesting con-

structors. In that way, one obtains several benefits (no need to check containment

constraints) without a price to pay since, as shown in the previous section, plain and

nested representations are in bijective correspondence.

6 Programming Model Transformations

The need for visual modelling languages and the graph-based nature of models

have contributed to the success of graph transformation approaches to model-based

transformations. In such approaches, transformations are programmed in a declarative

way by means of a set of (graph) rewrite rules. This section discusses two rule-based

approaches to the definition of model transformations. Both consist on defining a

rewrite theory over (possibly nested) object collections. The main difference between

the approaches is the format of rules. The first approach is based on the tradition of

single-pushout graph transformation [Roz97], while the second one stems from the

tradition of Structural Operational Semantics (SOS) [Plo04].
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Fig. 6. Reconfiguration rule transporting a workpiece to the location of its next tool

Fig. 7. Reconfiguration rule evacuating items from a compromised room to a safe one

6.1 Graph transformation style

The transformation style that we consider here is based on the single-pushout graph

transformation approach. The main idea is that each rule has a left-hand side and a

right-hand side pattern. Each pattern is composed by a set of objects (nodes) possibly

interrelated by means of association ends (edges). A rule can be applied to a model

whenever the left-hand side can be matched with part of the model, i.e. each object in

the left-hand side is (injectively) identified with an object and idem for the association

ends. The application of a rule removes the matched part of the model that does not

have a counterpart in the right-hand side and, vice versa, adds to the model a fresh

copy of the right-hand side part that is not present in the left-hand side. Items in

common between the left-hand side and the right-hand side are preserved during the

application of the rule. Very often, rules are equipped with additional application

conditions, including those typical of graph transformation systems (e.g. no dangling

edges) and its extensions like Negative Application Conditions (NACs).
In our setting, this means that rules have in general the following format:

crl << lhs conf1 >> => << rhs conf1 >>

if applicable(lhs conf1) .

where lhs and rhs stand for the rule’s left- and right-hand side object configurations,

conf1 acts as the context in which the rule will be applied (i.e. the rest of the object

configuration), and applicable is the boolean function implementing the application

condition. Simpler forms are possible, e.g. in absence of application conditions the

context is not necessary and rules take the form: rl lhs => rhs .

To illustrate the general rule format, we consider first the plain representation

of models based on object collections. A simple reconfiguration rule is illustrated

in Figure 6. The rule models the transportation of a workpiece p1 from its current
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Fig. 8. Reconfiguration rule propagating the alarm within multiset union

location r1 to the location r2 of the tool t2 that must operate on it (as indicated with

the next relation). The rule abstracts away from the actual room-by-room physical

transportation and just replaces the items edge from r1 to p1 by a new such edge

from r2 to p1:

rl << < r1 : Room | alarm: off , ends(items): p1 items1 , attSet1 >

< p1 : Piece | opp(rooms): r1 , ends(next): t2 , attSet2 >

< r2 : Room | alarm: off , ends(items): t2 items2 , attSet3 >

< t2 : Tool | state: ready , opp(items): r2 , attSet4 >

conf1 >> =>

<< < r1 : Room | alarm: off , ends(items): items1 , attSet1 >

< p1 : Piece | opp(rooms): r2 , ends(next): t2 , attSet2 >

< r2 : Room | alarm: off , ends(items): t2 p1 items2 , attSet3 >

< t2 : Tool | state: ready , opp(items): r2 , attSet4 >

conf1 >> .

Let us now consider the hierarchical representation of models based on nested

collections of objects. The reconfiguration example we consider is a migration rule

that models the evacuation of all items within a compromised room (alarm: on) to a

safe one (alarm: off). Figure 7 illustrates the rule:

rl << < r1 : Room | alarm: on , cont(rooms): rooms1 , cont(items): items1 >

< r2 : Room | alarm: off , cont(rooms): rooms2 , cont(items): items2 >

conf1 >> =>

<< < r1 : Room | alarm: on , cont(rooms): rooms1 , cont(items): none >

< r2 : Room | alarm: off , cont(rooms): rooms2 , cont(items): items1 items2 >

conf1 >> .

It is worth to observe, that these kind of rules have some limitations that are

particularly relevant in the hierarchical representation: the nesting depth is fixed. In

the above example, for instance, it applies to top-level rooms only. This problem is not

present in the flat representation, though both suffer from another relevant issue: the

coordination of transformations involving an arbitrary number of objects. The rule

format we shall see in the next section overcomes such drawbacks.

6.2 Structural operational semantics style

In this section we describe transformation rules in the style of Structural Operational

Semantics [Plo04] (SOS). The basic idea is to define a model transformation by
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Fig. 9. Reconfiguration rule propagating the alarm within the nesting structure

structural induction, which in our setting basically amounts to exploiting set union

and (possibly) nesting.

Before introducing the different rule formats and illustrating an example we recall

that SOS rules make use of rule labels to coordinate rule applications. We follow the

implementation style of SOS semantics in rewriting logic described in [VMO06] by

enriching our signatures with sorts for rule labels (Lab), label-prefixed configurations

LabConf, and a constructor { } : Lab Conf => LabConf for label-prefixed config-

urations. In addition, we enforce rule application at the top-level of terms only (via

Maude’s frozen attribute [BM06]) so that sub-terms are rewritten only when required

in the premise of a rule (as required by the semantics of SOS rules). With this notation

a term {lab1}conf1 represents that a configuration conf1 obtained after application

of a lab1-labelled rule.

We start by considering a flat representation of models, where the only structure is

that of set union. The most typical rule format allows us to conclude a transformation

lab1 for a configuration made of two parts conf1 and conf2 provided that each part

can respectively perform some transformation lab2, lab3:

crl conf1 conf2 => {lab1} conf3 conf4

if conf1 => {lab2} conf3

/\ conf2 => {lab3} conf4 .

As an example consider a reconfiguration that triggers the alarm of all rooms.

Various rules are needed. First, we need rules for individual room objects to declare

their ability to turn their alarm on, and items to agree on that. For simplicity we

consider that any object is ready to accept the transformation:

rl obj1 => {alarm!} obj1 .

The interesting rule is illustrated in Figure 9 which allows us to exploit union set:

crl conf1 conf2 => {alarm!} conf3 conf4

if conf1 => {alarm!} conf3 .

/\ conf2 => {alarm!} conf4 .

Consider now a hierarchical representation of models based on nested object

collections. In this situation we need rules for dealing with nesting. Typically, the
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needed rule format is the one that defines the transformation lab1 of an object oid1

conditioned to some transformation lab2 of one of its contents contid1:

crl < oid1 : cid1 | cont(contid1): conf1 , attSet1 > =>

{lab1} < oid1 : cid1 | cont(contid1): conf2 , f(attSet1) >

if conf1 => {lab2} conf2 .

Such rules might affect the attributes of the container object (denoted with

function f) but will typically not change the object’s identifier or class (unless we are

dealing with a model refactoring or translation). More elaborated versions of the above

rule are also possible, for instance involving more than one object or not requiring any

rewrite of contained objects.

In our example of the alarm propagation, the rule we need is illustrated in Figure 9

and textually defined as:

crl < r1 : Room | alarm: alarm1 , cont(rooms): rooms1 , cont(items): items1 > =>

{alarm!} < r1 : Room | alarm: on , cont(rooms): rooms2 , cont(items): items1 >

if rooms1 => {alarm!} rooms2 .

Finally, rules are need to close the transformations at the level of models. Such

rules have the following format:

crl << conf1 >> => << conf2 >>

if conf1 => {lab1} conf2 .

In our example the rule for alarm propagation would be

crl << conf1 >> => << conf2 >>

if conf1 => {alarm!} conf2 .

6.3 Discussion: Graph transformation or SOS style?

The presented rule formats are well-known in Computer Science. For instance, in the

field of programming languages semantics they essentially correspond to reduction and

transition label semantics of process algebras. As in almost any choice of techniques,

there is a killer application for any style. For instance, a plain graph representation

and a graph-like rule format is best suited for those transformations involving a fixed

number of inter-related, arbitrarily composed objects. This is for instance evident in

the example of single workpiece transportation (cf. Figure 6). Just one rule is needed

with the mentioned representation and rule format. Consider, instead, the hierarchical

representation based on nested object collections. The number of possible situations is

infinite: the room of the workpiece can contain the room of the machine tool at any

depth, or vice versa, or they could not contain each other but be contained at different

depths of the production plant. Therefore it is not possible to identify a context for

a reduction rule. SOS rules are needed in this case, in the very same way as action

synchronisation in process algebras with nesting features (e.g. ambients or sessions).

On the other hand, a hierarchical representation and a SOS-like rule format is

best suited for those transformations guided by the nesting structure and involving an

arbitrary number of objects. For instance, if we want to define a reconfiguration turning

all alarms on or off in one shot (cf. Figure 9). Instead, the graph-like transformation

requires a cumbersome set of rules to deal with the possibility that some rooms are not

ready to perform the required reconfiguration. Indeed, some similar reconfigurations

(like reversing a chain) are known not to be programmable with this rule format.
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Fig. 10. SPO reconfiguration rule evacuating an item from a compromised room

Apart from the above mentioned differences, the graph-like approach has as main

advantages its proliferation among the community of graph transformation and visual

modelling languages and the fact that transformations are sequential: rule applications

are composed one after the other. On the other hand the SOS style offers a familiar

approach to members of the formal methods and programming language semantics

communities and provides tree-shaped transformations (since rule derivations are

inductively defined) that facilitate their layered understanding.

Of course many other formats have been proposed in the literature and among

them it is worth mentioning Synchronised Hyperedge Replacement [FHL+05] (SHR),

which mixes SOS ingredients and graph productions. SHR is a graph-based framework

for modelling the operational semantics of systems with mobility and multiple synchro-

nisation. Several flavours of SHR semantics exist, but have as a common core the idea

of defining the transformation of a large graph by combining local transformations

that apply to single edges. The nodes of the graph are responsible for coordinating the

interaction of all the edges that are attached to them. However, the basic structure

taken into account by SHR rules is that of graph union and locality of nodes. In this

sense, our approach can be seen as extending SHR to deal with nesting and more

general structures.

7 Executing Model Transformations

This section presents some experimental results intended to raise the interest on

performance issues when executing model transformations, depending on the chosen

representation and rule format. As a test case we use the evacuation scenario of

our running example, where items must be transported from compromised rooms

(those with alarm on) to safe ones (those with alarm off). We consider an additional

status attribute for items (that was not introduced in previous sections for the sake

of simplicity). It can take various values, including safe (whenever they the item is

safe).

The approach based on a flat representation is given by a set of SPO-like rules.

The most significant rule is similar to the ones discussed in § 6.1 and is depicted in

Figure 10. The rule considers a compromised room r1 and a safe room r2 that are



On Structured Model-Driven Transformations 19

Fig. 11. SOS reconfiguration rules evacuating all items from a compromised room

neighbours (they have a common container room r0). The rule moves one item i1

from the compromised room to the safe one, while setting its status attribute to safe.

Some more rules are needed (for instance for considering top-level rooms without

containters) and some of them have application conditions. As a consequence, the

applicability of those rule requires to check the whole model and we have no guidance

on which rules to apply first. The safe system (the system without items in need of

evacuation) is reached when no more transformation rules are applicable.

The structured transformation is based on a hierarchical representation and

conditional rules. Figure 11 illustrates the main rule: all the items c1 of a compromised

room r1 are evacuated into a safe neighbor room r2, while setting their status to safe

inductively (via safe!-labelled rules).

We are not going into further details of each transformation, but we offer some

simple experimental results to provide evidence of the advantages of our proposal in

some cases.

In order to test the scalability of both transformation approaches we have prepared

an automatic generator of production plants. The generator is parametrizable to allow

us to generate different test cases. Here we consider a simple case with a single

parameter which is the depth of the room containment tree, i.e. for a given natural

number n, we generate a production plant organised as a binary tree of depth n. In

those trees, leaves are items and the fathers are either compromised or safe rooms.

The rest of the rooms are safe and the grandfather of leaves have exactly one safe

room and one compromised room.

Experiments were run under Mac OS X on a MacBook with a 2.0Ghz dual-core

processor and 2GB of RAM. Each experiment consists on the transformation of an

instance of our test case using the plain (SPO) and the structured transformation (SOS)

described above. For each experiment we have recorded the number of rewrites and the

running time. Space consumption was not measured as Maude does not provide such

information. Each experiment is performed for increased size factor n, starting with

n = 2 and ending with n = 8 (recall that each model has size of order 2n). The goal

of the experiment is to collect evidence of the fact that structure-driven models and

transformation rules can lead to a considerably more efficient model transformation.

The results of Figure 12 show a clear superiority of structured model transforma-
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Fig. 12. Performance evaluation of flat (SPO) and structured (SOS) model transformations

tion both in terms of running time and number of rewrites. These results confirm our

expectation. Indeed, in this particular test case the situation can be roughly explained

as follows. In most cases matching a rule consists on finding a subtree whose root

is a room having two subtrees: one having a compromised room as root and one

having a safe room as root. In the SPO case the tree is not parsed: indeed we are

given a graph and have to check all possible subset of nodes to see if they constitute

indeed a tree. Instead in the SOS case the tree is already parsed (the parsing is term

of the hierarchical representation) which enormously facilitates rule matching. As a

consequence, the SPO transformation involves more unsuccessful rule attempts and

this is the main reason of the drastic difference in running time (and not in number of

effective rewrites).

This small experiment is not intended to claim that structured transformations

are more performant in general, but to provide evidence that performance is a key

issue when executing transformations or analysing them. We believe that these issues

deserve further consideration and investigation and the possibility of moving from

one representation style to the other in a seamless way can be profitably exploited to

select each time the more convenient approach.

8 Conclusion

We have presented an approach for the description and analysis of model- and rule-

based specifications with hierarchical structure. Our approach provides several benefits.

First, it is built over the solid foundation of algebraic approaches like rewriting logic,

structural operational semantics. Second, all the mathematical machinery is presented

in the unifying, tool-supported framework of rewriting logic. Third, the approach fits

perfectly with MOF-based technology as the MOF structure is somewhat homomorphic

with our formalism. As a matter of fact our approach can be understood as a no-harm

enhancement of the algebraic approach to MOF of [BM08]: one can pass from a

composition-as-relation representation to a composition-as-containment representation

in a bijective manner, to use structural induction there where convenient. Fourth, the

approach imposes a design discipline based on the hierarchical structure of composition

associations, which contributes to the scalability of model- and rule-based approaches.

Indeed, designers can benefit from the layered view introduced by the hierarchical

structure and structured rewrite rules can lead to more efficient analysis activities.
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Oliet, José Meseguer, and Carolyn L. Talcott. All About Maude, volume 4350 of
Lecture Notes in Computer Science. Springer, 2007.



22 International Journal of Software and Informatics, Vol.???, No.???, ??? ???

[EEPT06] H. Ehrig, K. Ehrig, U. Prange, and G. Taentzer. Fundamentals of Algebraic
Graph Transformation. Springer, March 2006.

[FHL+05] Gian Luigi Ferrari, Dan Hirsch, Ivan Lanese, Ugo Montanari, and Emilio Tuosto.
Synchronised hyperedge replacement as a model for service oriented computing. In
Proceedings of the 4th International Symposium Formal Methods for Components
and Objects (FMCO’05), volume 4111 of LNCS, pages 22–43. Springer, 2005.

[FL97] Pascal Fradet and Daniel Le Métayer. Shape types. In Proceedings of the 24th
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages
(POPL ’97), pages 27–39, New York, NY, USA, 1997. ACM Press.

[HIM98] Dan Hirsch, Paola Inverardi, and Ugo Montanari. Graph grammars and constraint
solving for software architecture styles. In Proceedings of the International Software
Architecture Workshop (ISAW’98), pages 69–72. ACM Press, 1998.

[HM04] Dan Hirsch and Ugo Montanari. Shaped hierarchical architectural design. ENTCS,
109:97–109, 2004.
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