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Let E, F be two Polish spaces and [X n, Yn], [X , Y ] random variables with values in E3 F (not

necessarily defined on the same probability space). We show some conditions which are sufficient in

order to assure that, for each bounded continuous function f on E3 F, the conditional expectation of

f (X n, Yn) given Yn converges in distribution to the conditional expectation of f (X , Y ) given Y .
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1. Introduction

Let E, F be two Polish spaces. Let X , Y be two random variables defined on a probability

space (�, A, P) with values in E, F, respectively. Moreover, for each integer n > 0, on a

probability space (�n, An, Pn), let X n be a random variable with values in E and Yn a

random variable with values in F. The problem we consider here is to find conditions under

which, for each bounded continuous function f on E3 F, we have the weak convergence

of the distribution under Pn of the conditional expectation EPn [ f (X n, Yn)jYn] to the

distribution under P of the conditional expectation EP f (X , Y )jY½ �. Problems of this kind

arise in the theory of filtering, which plays a fundamental role in various fields, such as

mathematical finance, biology and telecommunications. Indeed, in the theory of filtering, it

is known that the conditional expectation of the signal given the observation is the optimal

estimate, in the sense of the minimum mean square error. Computation of this conditional

expectation is, in general, extremely difficult and so it is natural to seek approximations.

Thus the problem is to find conditions under which the approximation of the signal–

observation pair leads to a conditional expectation that is close (in some sense) to the

conditional expectation of the signal given the observation.

A first result in this direction may be found in Goggin (1994; 1997), where a change of

probability measure is assumed, from Pn to a suitable Qn and from P to a suitable Q, in

such a way that, in particular, Pn is absolutely continuous with respect to Qn on the � -field
� (X n, Yn), P is absolutely continuous with respect to Q on the � -field � (X , Y ), and, for
each n, the random variables X n, Yn are independent under Qn and the random variables

X , Y are independent under Q. In this paper, we replace the assumption of independence by

the less restrictive assumption that, for each bounded continuous function g on E, the

distribution under Qn of EQn g(X n)jYn]½ converges weakly to the distribution under Q of
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EQ g(X )jY ]½ . This condition becomes necessary if we assume that P is equivalent to Q on

� (X , Y ) (see Corollary 4.2). Moreover, we obtain a result for the convergence of the

conditional expectations not only of the form EPn f (X n)jYn½ � (as in Goggin 1994; 1997), but

also of the form EPn f (X n, Yn)jYn½ �. This allows us (see Corollary 4.1) to obtain that, if the

distribution under Pn of [X n, Yn] converges weakly to the distribution under P of [X , Y ],

then the weak convergence of the distribution under Pn of EPn f (X n)jYn½ � to the distribution

under P of EP f (X )jY½ � for each bounded continuous function f on E is equivalent to the

weak convergence of the distribution under Pn of EPn f (X n, Yn)jYn½ � to the distribution

under P of EP f (X , Y )jY½ �, for each bounded continuous function f on E3 F.

Finally, we would like to point out the simplicity of our proof compared to the one

presented by Goggin.

The paper is structured as follows. We present our main result (Theorem 2.1) in Section

2 and prove it in Section 3. In Section 4 we find some characterizations for the convergence

of conditional expectations and prove that, if the two probability measures P, Q are

equivalent on � (X , Y ), condition (b) in Theorem 2.1 is necessary. In Section 5, we show

that the result given by Goggin is a particular case of our Theorem 2.1.

2. Main result

Let E, F be two Polish spaces, endowed with their Borel � -fields. On a probability space

(�, A, P), let X be a random variable with values in E and Y a random variable with

values in F. For each integer n > 0, on a probability space (�n, An, Pn), let X n be a

random variable with values in E and Yn a random variable with values in F.

Let Q be a probability measure on (�, A) such that P is absolutely continuous with

respect to Q on the � -field � (X , Y ) generated by [X , Y ], and let us denote by Z a version

of the corresponding Radon–Nikodym derivative. Moreover, for each n, let Qn be a

probability measure on (�n, An) such that Pn is absolutely continuous with respect to Qn

on the � -field � (X n, Yn) generated by [X n, Yn], and let us denote by Zn a version of the

corresponding Radon–Nikodym derivative. Thus, we have

Z ¼ l(X , Y ), Zn ¼ ln(X n, Yn),

where l, l n are suitable positive real Borel functions on E3 F. Denote by Z:Q the

probability measure on A which has density Z with respect to Q. Similarly, for each n > 0,

denote by Zn:Qn the probability measure on An which has density Zn with respect to Qn.

We shall prove the following result:

Theorem 2.1. In the above setting, let us assume the following conditions:

(a) The distribution �n of [X n, Yn, Zn] under Qn converges weakly to the distribution �
of [X , Y , Z] under Q.

(b) For each bounded continuous function g on E, the distribution under Qn of the

conditional expectation EQn g(X n)jYn]½ converges weakly to the distribution under Q

of the conditional expectation EQ g(X )jY ]½ .
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Then, for each bounded continuous function f on E3 F, the distribution under Pn of the

conditional expectation EPn f (X n, Yn)jYn½ � converges weakly to the distribution under P of

the conditional expectation EP f (X , Y )jY½ �.

3. Proof of Theorem 2.1

Let us start by observing that, since we have the relations

Pn ¼ Zn:Qn on � (X n, Yn), P ¼ Z:Q on � (X , Y ),

in order to prove Theorem 2.1 we may replace the probability measures P, Pn by the

probability measures Z:Q, Zn:Qn, respectively. Thus, we may work only with the probability

spaces (�, A, Q), (�n, An, Qn) and the triplets of random variables (X , Y , Z),

(X n, Yn, Zn).

For each bounded continuous function g on E, the distribution under Q of the

conditional expectation EQ g(X )jY ]½ depends only on the distribution of [X , Y ] under Q.

Moreover, if f is a bounded continuous function on E3 F, and U , V are versions of the

conditional expectations

EQ[ZjY ] , EQ[ f (X , Y )ZjY ],
then a version W of the conditional expectation

E Z:Q f (X , Y )jY½ �
is given by W ¼ r(U , V ), where r is the real Borel function defined on R2 by

r(u, v) ¼ v=u, for u 6¼ 0

0, for u ¼ 0:

�
(1)

Therefore, the distribution of W under Z:Q depends only on the distribution � of [X , Y , Z]

under Q. Thus, we see that, in order to prove Theorem 2.1, we may replace the triplet

(X , Y , Z) by another one, say (X 9, Y 9, Z9) (possibly, defined on a new probability space),

provided that its joint distribution is �. It is worthwhile to observe that, since we require that

the joint distribution of the new triplet is the same as the old one, we have the equality

Z9 ¼ l(X 9, Y 9) almost everywhere. Similarly, for each n, we may replace the triplet

(X n, Yn, Zn) by another one, say (X 9n, Y 9n, Z9n) (possibly, defined on a new probability

space), provided that its joint distribution is �n. On the other hand, assumption (a) and

Skorohod’s theorem allow us to choose the new triplets (X 9, Y 9, Z9) and (X 9n, Y 9n, Z9n) in

such a way that they are defined on a common probability space (�9, A9, Q9) and, on this

space, the random variable [X 9n, Y 9n, Z9n] converges almost surely to [X 9, Y 9, Z9].

Summing up, what we have just observed allows us, without loss of generality, to

consider only the particular case in which all the probability spaces (�n, An, Qn) coincide

with (�, A, Q) and, on this space, the random variable [X n, Yn, Zn] converges almost

surely to the random variable [X , Y , Z]. Assuming this is the case, let us observe that, by

Scheffé’s theorem, the sequence (Zn) converges in L1(Q) to Z. Now, we divide the proof

into two steps.
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Step 1. Let us prove that, if g is a bounded continuous function on E, and T , Tn are

versions of the conditional expectations

EQ[g(X )jY ], EQ[g(X n)jYn],

then Tn converges in probability to T . To this end, let us observe that the random variables

Tn are uniformly bounded and, by assumption, the sequence (Tn) converges in distribution

under Q to T . Thus, since we have the equalityð
jTn � T j2 dQ ¼

ð
T 2

n dQ� 2

ð
TTn dQþ

ð
T 2 dQ,

it suffices to prove that we have
Ð
T 2 dQ ¼ limn

Ð
TTn dQ, or, more generally,ð

RT dQ ¼ lim
n

ð
RTn dQ (2)

for each bounded random variable R which is measurable with respect to the � -field � (Y )
generated by Y, that is, of the form h(Y ), where h is a bounded Borel function on F. On the

other hand, since the functions of this type for which the desired convergence holds form a

monotone class, we can limit ourselves to taking into account only the case of a bounded

continuous function h on F. In this case, the assertion immediately follows: indeed, by the

convergence in distribution of [X n, Yn] to [X , Y ] and the convergence in probability of Yn to

Y , we have ð
h(Y )T dQ ¼

ð
h(Y )g(X ) dQ ¼ lim

n

ð
h(Yn)g(X n) dQ

¼ lim
n

ð
h(Yn)Tn dQ ¼ lim

n

ð
h(Y )Tn dQ:

Step 2. Let f be a bounded continuous function on E3 F and V , Vn versions of the

conditional expectations

EQ[ f (X , Y )ZjY ], EQ[ f (X n, Yn)ZnjYn]:

Let us prove that Vn converges in L1(Q) to V .

To this end, recall that we have Z ¼ l(X , Y ) and observe that, if we denote by � the

distribution of [X , Y ] under Q, for each E . 0, we can find an integer k and k pairs of

functions (g1, h1), . . . , (gk , hk), where gk is a bounded continuous function on E and hk

is a bounded continuous function on F, such that����� f (x, y)l(x, y)�
Xk

j¼1

g j(x)h j(y)

�����
L1(�)

, E,

that is, ����� f (X , Y )Z �
Xk

j¼1

g j(X )h j(Y )

�����
L1(Q)

, E: (3)
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On the other hand, under Q, the sequence ( f (X n, Yn)Zn �
Pk

j¼1 g j(X n)h j(Yn)) converges

almost surely to the random variable

f (X , Y )Z �
Xk

j¼1

g j(X )h j(Y ):

Moreover, it is uniformly integrable: indeed, the functions f , g j, h j are bounded and, as we

have already observed, the sequence (Zn) converges in L1(Q) to Z. Therefore, the above

convergence is also in L1(Q). Thus, by inequality (3), for n sufficiently large, we have����� f (X n, Yn)Zn �
Xk

j¼1

g j(X n)h j(Yn)

�����
L1(Q)

, E: (4)

Let T j, T j,n be versions of the conditional expectations

EQ[g j(X )jY ], EQ[g j(X n)jYn]:

Then, by Jensen’s inequality and relations (3) and (4), we find

kV � VnkL1(Q) , 2Eþ
Xk

j¼1

kT jh j(Y )� T j,n h j(Yn)kL1(Q):

Hence, letting n go to þ1 and using what we have proved in step 1 and the fact that Yn

converges in probability under Q to Y , we obtain

lim sup
n

kV � VnkL1(Q) < 2E:

Since E is arbitrary, the convergence of Vn is proved. In particular (for f ¼ 1), it follows that,

if U , Un are versions of the conditional expectations

EQ[ZjY ], EQ[ZnjYn],

then Un converges in L1(Q) to U . Thus, we have that the random variable [Un, Vn]

converges to [U , V ] in probability under Q (and so under Z:Q). Moreover, since we haveð
fU¼0g

Z dQ ¼
ð
fU¼0g

U dQ ¼ 0,

the set of the discontinuity points of the function r (defined by (1)) is negligible with respect

to the distribution of [U , V ] under the probability measure Z:Q. Therefore, we can affirm

that the random variable Wn ¼ r(Un, Vn) converges to W ¼ r(U , V ) in probability (and so

in distribution) under Z:Q. Finally, remembering that Zn converges in L1(Q) to Z, we find

that the distribution of Wn under Zn:Q converges weakly to the distribution of W under Z:Q.
This proves the theorem since the random variables Wn, W are versions of the conditional

expectations

E Z:Q f (X , Y )jY½ �, E Z n:Q f (X n, Yn)jYn½ �:
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4. Some complements

From Theorem 2.1 we obtain the following corollaries:

Corollary 4.1. Let E, F be two Polish spaces, endowed with their Borel � -fields. On a

probability space (�, A, P), let X be a random variable with values in E and Y a random

variable with values in F. Moreover, for each integer n > 0, on a probability space

(�n, An, Pn), let X n be a random variable with values in E and Yn a random variable with

values in F. Then the following statements are equivalent:

(i) For each bounded continuous function f on E3 F, the distribution under Pn of the

conditional expectation EPn f (X n, Yn)jYn½ � converges weakly to the distribution under

P of the conditional expectation EP f (X , Y )jY½ �.
(ii) The distribution under Pn of [X n, Yn] converges weakly to the distribution under P

of [X , Y ] and, for each bounded continuous function g on E, the distribution under

Pn of EPn g(X n)jYn½ � converges weakly to the distribution under P of EP g(X )jY½ �.

Proof. Implication (i) ) (ii) is obvious. Implication (ii)) (i) is a particular case of Theorem

2.1; that is, the case in which we have P ¼ Q (and so Z ¼ 1) and Pn ¼ Qn (and so Zn ¼ 1)

for each n. h

Corollary 4.2. Under the notation of Theorem 2.1, let us assume condition (a) and

QfZ . 0g ¼ 1 (that is, P equivalent to Q on � (X , Y )). Moreover, let us assume that, for

each bounded continuous function f on E, the distribution under Pn of the conditional

expectation EPn f (X n)jYn½ � converges weakly to the distribution under P of the conditional

expectation EP f (X )jY½ �. Then condition (b) of Theorem 2.1 holds.

Proof. Since, by assumption, the distribution of Zn under Qn converges weakly to the

distribution of Z under Q and we have QfZ . 0g ¼ 1, we obtain that

lim
n

QnfZn . 0g ¼ QfZ . 0g ¼ 1: (5)

Therefore, for n sufficiently large, the following random variables are well defined:

Wn ¼ QnfZn . 0g�1 IfZ n.0g:

Further, we find

lim
n
EQn (Wn � 1)2

� �
¼ 0: (6)

If we set Z9n ¼ Wn=Zn and Z9 ¼ 1=Z, the probability measure Q9n ¼ Wn:Qn is absolutely

continuous with respect to Pn on � (X n, Yn) with Radon–Nikodym derivative Z9n and Q9 ¼ Q

is absolutely continuous with respect to P on � (X , Y ) with Radon–Nikodym derivative Z9. It

is easy to see (using Skorohod’s theorem and Scheffé’s theorem) that, by condition (a) of

Theorem 2.1 and equality (5), we have that the distribution under Pn of the random variable

[X n, Yn, Z9n] converges weakly to the distribution under P of the random variable [X , Y , Z9].
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Hence, applying Theorem 2.1, we obtain that, for each bounded continuous function f on

E3 F, the distribution under Q9n of EQ9n f (X n, Yn)jYn½ � converges weakly to the distribution

under Q9 of EQ9 f (X , Y )jY½ �. In particular, we obtain that, for each bounded continuous

function g on E, the distribution under Q9n of EQn9 g(X n)jYn½ � converges weakly to the

distribution under Q9 of EQ9 g(X )jY½ �. Recalling that Q9n ¼ Wn:Qn and Q9 ¼ Q, since

equality (6) holds, we may conclude that condition (b) of Theorem 2.1 is satisfied. h

With an argument similar to the one used in the proof of step 1 of Theorem 2.1, we

obtian the following proposition:

Proposition 4.3. In the setting of Corollary 4.1, let us assume that, for each n, the probability

space (�n, An, Pn) coincides with (�, A, P). Then the following conditions are equivalent:

(i) For each bounded continuous function f on E3 F, the conditional expectation

EP f (X n, Yn)jYn½ � converges in L1(P) to the conditional expectation EP f (X , Y )jY½ �.
(ii) The sequence (Yn) converges in probability to Y and, for each bounded continuous

function f on E3 F, the conditional expectation EP f (X n, Yn)jYn½ � converges in

distribution to the conditional expectation EP f (X , Y )jY½ �.

Proof. Regarding implication (i) ) (ii), we have only to prove that the convergence in

probability of h(Yn) to h(Y ) for each bounded continuous function h on F is equivalent to

the convergence in probability of Yn to Y . To this end, let us fix a countable basis U of F

and, for each open set U in U, let us denote by hU a bounded positive continuous function on

F such that fhU . 0g ¼ U . Thus, if we start from a given subsequence of (Yn), it is possible

to extract (by a diagonal argument) a sub-subsequence, say (Y 9n), such that, for each U in U,
the sequence (hU (Y 9n)Þ converges almost surely to hU (Y ). Therefore, there exists a set H in

A with P(H) ¼ 1 and such that, for each ø in H and U in U, the sequence (hU (Y 9n(ø))Þ
converges to hU (Y (ø)). Then it is easy to see that, if ø belongs to H , the sequence (Y 9n(ø))
converges to Y (ø): indeed, for each U in U with Y (ø) 2 U , since hU (Y (ø)) . 0, we have

hU (Y 9n(ø)) . 0, that is, Y 9n(ø) 2 U , for n sufficiently large.

Implication (ii)) (i) follows from an argument similar to the one used in step 1 of the

proof of Theorem 2.1. h

From Corollary 4.1 and Proposition 4.3 we obtain the following corollary:

Corollary 4.4. In the setting of Proposition 4.3, the following conditions are equivalent:

(i) For each bounded continuous function f on E3 F, the conditional expectation

EP f (X n, Yn)jYn½ � converges in L1(P) to the conditional expectation EP f (X , Y )jY½ �.
(ii) The sequence (Yn) converges in probability to Y, the random variable [X n, Yn]

converges in distribution to [X , Y ] and, for each bounded continuous function g on

E, the conditional expectation EP g(X n)jYn½ � converges in distribution to the

conditional expectation EP g(X )jY½ �.
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5. Comparison with Goggin’s result

Let us use the same notation as in the previous sections. The result proved in Goggin

(1994) is the following:

Theorem 5.1. For each n, let Qn be a probability measure on (�n, An) such that the

probability measure Pn is absolutely continuous with respect to Qn on the � -field � (X n, Yn),

and let us denote by Zn a version of the corresponding Radon–Nikodym derivative. Let us

assume the following conditions:

(A) On the probability space (�, A) there exist a probability measure Q and a positive

� (X , Y )-measurable random variable Z with EQ[Z] ¼ 1 such that the distribution of

[X n, Yn, Zn] under Qn converges weakly to the distribution of [X , Y , Z] under Q.

(B) The distribution under Pn of [X n, Yn] converges weakly to the distribution under P

of [X , Y ].

(C) For each n, the two random variables X n, Yn are independent under Qn and the two

random variables X , Y are independent under Q.

Then the following statements hold:

(i) The probability measure P is absolutely continuous with respect to Q on the � -field
� (X , Y ), and Z is the corresponding Radon–Nikodym derivative.

(ii) For each bounded continuous function f on E, we have that the distribution under

Pn of the conditional expectation EPn f (X n)jYn½ � converges weakly to the distribution

under P of the conditional expectation EP f (X )jY½ �.

It is easy to see that we can obtain the above theorem as a corollary of Theorem 2.1.

More precisely, we have the following corollary:

Corollary 5.2. With the notation of Theorem 5.1, let us assume conditions (A), (B) and (C).

Then, the probability measure P is absolutely continuous with respect to Q on � (X , Y ) with
Radon–Nikodym derivative Z and condition (b) – and so the assertion – of Theorem 2.1

holds.

Proof. We observe that, by conditions (A) and (B), for each bounded continuous function f

on E3 F, we haveð
f (X , Y ) dP ¼ lim

n

ð
f (X n, Yn) dPn ¼ lim

n

ð
f (X n, Yn)Zn dQn

¼
ð
f (X , Y )Z dQ

(where the last equality follows by Skorohod’s theorem and Scheffé’s theorem). Moreover, by

condition (C), for each bounded continuous function g on E and for each n, we have

EQn g(X n)jYn] ¼ EQn[g(X n)] and EQ g(X )jY ] ¼ EQ[g(X )]:
��
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Thus, in order to arrive at the conclusion, it is sufficient to remember that, by assumption, the

distribution under Qn of X n converges weakly to the distribution under Q of X . h
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