Logo eprints

Modular Termination and Combinability for Superposition Modulo Counter Arithmetic

Ringeissen, Christophe and Senni, Valerio Modular Termination and Combinability for Superposition Modulo Counter Arithmetic. In: Frontiers of Combining Systems : Title Frontiers of Combining Systems : Proceedings of the 8th International Symposium, FroCoS 2011. Lecture Notes in Computer Science (6989). Springer, pp. 211-226. ISBN 978-3-642-24363-9 (2011)

Full text not available from this repository.

Abstract

Modularity is a highly desirable property in the development of satisfiability procedures. In this paper we are interested in using a dedicated superposition calculus to develop satisfiability procedures for (unions of) theories sharing counter arithmetic. In the first place, we are concerned with the termination of this calculus for theories representing data structures and their extensions. To this purpose, we prove a modularity result for termination which allows us to use our superposition calculus as a satisfiability procedure for combinations of data structures. In addition, we present a general combinability result that permits us to use our satisfiability procedures into a non-disjoint combination method à la Nelson-Oppen without loss of completeness. This latter result is useful whenever data structures are combined with theories for which superposition is not applicable, like theories of arithmetic.

Item Type: Book Section
Identification Number: https://doi.org/10.1007/978-3-642-24364-6_15
Additional Information: 8th International Symposium, FroCoS 2011, Saarbrücken, Germany, October 5-7, 2011
Subjects: Q Science > QA Mathematics > QA75 Electronic computers. Computer science
Research Area: Computer Science and Applications
Depositing User: Users 40 not found.
Date Deposited: 18 Sep 2012 12:20
Last Modified: 07 Mar 2013 12:56
URI: http://eprints.imtlucca.it/id/eprint/1355

Actions (login required)

Edit Item Edit Item