Logo eprints

Frequency-Domain Least-Squares Support Vector Machines to deal with correlated errors when identifying linear time-varying systems

Lataire, John and Piga, Dario and Tóth, Roland Frequency-Domain Least-Squares Support Vector Machines to deal with correlated errors when identifying linear time-varying systems. In: Proceedings of the 19th IFAC World Congress. IFAC, pp. 10024-10029. (2014)

Full text not available from this repository.

Abstract

A Least-Squares Support Vector Machine (LS-SVM) estimator, formulated in the frequency domain is proposed to identify linear time-varying dynamic systems. The LS-SVM aims at learning the structure of the time variation in a data driven way. The frequency domain is chosen for its superior robustness w.r.t. correlated errors for the calibration of the hyper parameters of the model. The time-domain and the frequency-domain implementations are compared on a simulation example to show the effectiveness of the proposed approach. It is demonstrated that the time-domain formulation is mislead during the calibration due to the fact that the noise on the estimation and calibration data sets are correlated. This is not the case for the frequency-domain implementation.

Item Type: Book Section
Identification Number: https://doi.org/10.3182/20140824-6-ZA-1003.00119
Additional Information: 19th IFAC World Congress, Cape Town, South Africa, August 24-29 2014
Uncontrolled Keywords: Frequency domain identification; Linear parametrically varying (LPV) methodologies; Nonparametric methods
Subjects: Q Science > QA Mathematics > QA75 Electronic computers. Computer science
Research Area: Computer Science and Applications
Depositing User: Ms T. Iannizzi
Date Deposited: 12 Jan 2015 11:36
Last Modified: 12 Jan 2015 11:36
URI: http://eprints.imtlucca.it/id/eprint/2456

Actions (login required)

Edit Item Edit Item