Logo eprints

Reciprocity of weighted networks

Squartini, Tiziano and Picciolo, Francesco and Ruzzenenti, Franco and Garlaschelli, Diego Reciprocity of weighted networks. Scientific Reports, 3 (2729). ISSN 2045-2322 (2013)

[img]
Preview
PDF - Published Version
Available under License Creative Commons Attribution No Derivatives.

Download (609kB) | Preview

Abstract

In directed networks, reciprocal links have dramatic effects on dynamical processes, network growth, and higher-order structures such as motifs and communities. While the reciprocity of binary networks has been extensively studied, that of weighted networks is still poorly understood, implying an ever-increasing gap between the availability of weighted network data and our understanding of their dyadic properties. Here we introduce a general approach to the reciprocity of weighted networks, and define quantities and null models that consistently capture empirical reciprocity patterns at different structural levels. We show that, counter-intuitively, previous reciprocity measures based on the similarity of mutual weights are uninformative. By contrast, our measures allow to consistently classify different weighted networks according to their reciprocity, track the evolution of a network's reciprocity over time, identify patterns at the level of dyads and vertices, and distinguish the effects of flux (im)balances or other (a)symmetries from a true tendency towards (anti-)reciprocation.

Item Type: Article
Identification Number: https://doi.org/10.1038/srep02729
Uncontrolled Keywords: Applied physics, Complex networks, Information theory and computation, Statistics
Subjects: H Social Sciences > HA Statistics
Q Science > QA Mathematics
Q Science > QC Physics
Research Area: Economics and Institutional Change
Depositing User: Caterina Tangheroni
Date Deposited: 05 Nov 2015 11:58
Last Modified: 08 Mar 2018 17:02
URI: http://eprints.imtlucca.it/id/eprint/2818

Actions (login required)

Edit Item Edit Item