Logo eprints

Optimal Scales in Weighted Networks

Garlaschelli, Diego and Ahnert, Sebastian E. and Fink, Thomas M.A. and Caldarelli, Guido Optimal Scales in Weighted Networks. In: Social Informatics. Lecture Notes in Computer Science, 8238 . Springer, pp. 346-359. ISBN 978-3-319-03259-7 (2013)

[img]
Preview
PDF - Submitted Version
Available under License Creative Commons Attribution Non-commercial.

Download (599kB) | Preview

Abstract

The analysis of networks characterized by links with heterogeneous intensity or weight suffers from two long-standing problems of arbitrariness. On one hand, the definitions of topological properties introduced for binary graphs can be generalized in non-unique ways to weighted networks. On the other hand, even when a definition is given, there is no natural choice of the (optimal) scale of link intensities (e.g. the money unit in economic networks). Here we show that these two seemingly independent problems can be regarded as intimately related, and propose a common solution to both. Using a formalism that we recently proposed in order to map a weighted network to an ensemble of binary graphs, we introduce an information-theoretic approach leading to the least biased generalization of binary properties to weighted networks, and at the same time fixing the optimal scale of link intensities. We illustrate our method on various social and economic networks.

Item Type: Book Section
Identification Number: https://doi.org/10.1007/978-3-319-03260-3_30
Uncontrolled Keywords: Weighted Networks; Maximum Entropy Principle; Graph Theory; Network Science
Subjects: Q Science > QA Mathematics
Q Science > QC Physics
Research Area: Economics and Institutional Change
Depositing User: Caterina Tangheroni
Date Deposited: 03 Dec 2015 15:37
Last Modified: 08 Mar 2018 17:02
URI: http://eprints.imtlucca.it/id/eprint/2966

Actions (login required)

Edit Item Edit Item