Logo eprints

EGAC: a genetic algorithm to compare chemical reaction networks

Tognazzi, Stefano and Tribastone, Mirco and Tschaikowski, Max and Vandin, Andrea EGAC: a genetic algorithm to compare chemical reaction networks. In: Proceedings of the Genetic and Evolutionary Computation Conference on - GECCO '17. ACM, pp. 833-840. ISBN 978-1-4503-4920-8 (2017)

[img]
Preview
PDF - Accepted Version
Download (888kB) | Preview

Abstract

Discovering relations between chemical reaction networks (CRNs) is a relevant problem in computational systems biology for model reduction, to explain if a given system can be seen as an abstraction of another one; and for model comparison, useful to establish an evolutionary path from simpler networks to more complex ones. This is also related to foundational issues in computer science regarding program equivalence, in light of the established interpretation of a CRN as a kernel programming language for concurrency. Criteria for deciding if two CRNs can be formally related have been recently developed, but these require that a candidate mapping be provided. Automatically finding candidate mappings is very hard in general since the search space essentially consists of all possible partitions of a set. In this paper we tackle this problem by developing a genetic algorithm for a class of CRNs called influence networks, which can be used to model a variety of biological systems including cell-cycle switches and gene networks. An extensive numerical evaluation shows that our approach can successfully establish relations between influence networks from the literature which cannot be found by exact algorithms due to their large computational requirements.

Item Type: Book Section
Identification Number: https://doi.org/10.1145/3071178.3071265
Uncontrolled Keywords: Chemical Reaction Networks; Ordinary Differential Equations; Model Comparison
Subjects: Q Science > QA Mathematics > QA75 Electronic computers. Computer science
Research Area: Computer Science and Applications
Depositing User: Ms T. Iannizzi
Date Deposited: 26 Sep 2017 09:19
Last Modified: 26 Sep 2017 09:19
URI: http://eprints.imtlucca.it/id/eprint/3765

Actions (login required)

Edit Item Edit Item