Morrison, Greg and Thirumalai, D. The shape of a flexible polymer in a cylindrical pore. Journal of Chemical Physics , 122 (19). p. 194907. ISSN 0021-9606 (2005)
|
PDF
- Published Version
Download (84kB) | Preview |
Abstract
We calculate the mean end-to-end distance R of a self-avoiding polymer encapsulated in an infinitely long cylinder with radius D. A self-consistent perturbation theory is used to calculate R as a function of D for impenetrable hard walls and soft walls. In both cases, R obeys the predicted scaling behavior in the limit of large and small D. The crossover from the three-dimensional behavior (D→∞) to the fully stretched one-dimensional case (D→0) is nonmonotonic. The minimum value of R is found at D ∼ 0.46RF, where RF is the Flory radius of R at D→∞. The results for soft walls map onto the hard wall case with a larger cylinder radius.
Item Type: | Article |
---|---|
Identification Number: | https://doi.org/10.1063/1.1903923 |
Subjects: | Q Science > QC Physics Q Science > QD Chemistry |
Research Area: | Economics and Institutional Change |
Depositing User: | Ms T. Iannizzi |
Date Deposited: | 03 Oct 2013 11:24 |
Last Modified: | 04 Oct 2013 11:07 |
URI: | http://eprints.imtlucca.it/id/eprint/1813 |
Actions (login required)
Edit Item |