Mukhopadhyay, Anirban and Oksuz, Ilkay and Bevilacqua, Marco and Tsaftaris, Sotirios A. Data-driven feature learning for myocardial segmentation of CP-BOLD MRI. In: Functional imaging and modeling of the heart. Springer, pp. 189-197. ISBN 978-3-319-20309-6 (2015)
Full text not available from this repository.Abstract
Cardiac Phase-resolved Blood Oxygen-Level-Dependent (CP-BOLD) MR is capable of diagnosing an ongoing ischemia by detecting changes in myocardial intensity patterns at rest without any contrast and stress agents. Visualizing and detecting these changes require significant post-processing, including myocardial segmentation for isolating the myocardium. But, changes in myocardial intensity pattern and myocardial shape due to the heart’s motion challenge automated standard CINE MR myocardial segmentation techniques resulting in a significant drop of segmentation accuracy. We hypothesize that the main reason behind this phenomenon is the lack of discernible features. In this paper, a multi scale discriminative dictionary learning approach is proposed for supervised learning and sparse representation of the myocardium, to improve the myocardial feature selection. The technique is validated on a challenging dataset of CP-BOLD MR and standard CINE MR acquired in baseline and ischemic condition across 10 canine subjects. The proposed method significantly outperforms standard cardiac segmentation techniques, including segmentation via registration, level sets and supervised methods for myocardial segmentation.
Item Type: | Book Section |
---|---|
Uncontrolled Keywords: | Dictionary learning; CP-BOLD MR; CINE MR; Segmentation |
Subjects: | Q Science > QA Mathematics > QA75 Electronic computers. Computer science Q Science > QM Human anatomy |
Research Area: | Computer Science and Applications |
Depositing User: | Caterina Tangheroni |
Date Deposited: | 16 Sep 2015 11:03 |
Last Modified: | 16 Sep 2015 11:03 |
URI: | http://eprints.imtlucca.it/id/eprint/2746 |
Actions (login required)
Edit Item |